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Abstract

The furious pace of Moore’s Law is driving computer architecture into a realm where the the speed
of light is the dominant factor in system latencies. The number of clock cycles to span a chip
are increasing, while the number of bits that can be accessed within a clock cycle is decreasing.
Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency
by migrating threads and data, but the overhead of existing implementations has previously made
migration an unserviceable solution so far.

I present an architecture, implementation, and mechanisms that reduces the overhead of mi-
gration to the point where migration is a viable supplement to other latency hiding mechanisms,
such as multithreading. The architecture is abstract, and presents programmers with a simple, uni-
form fine-grained multithreaded parallel programming model with implicit memory management.
In other words, the spatial nature and implementation details (such as the number of processors) of
a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to
devise programming languages for the machine that guide a programmer to express their ideas in
terms of objects, since objects exhibit an inherent physical locality of data and code. The machine
implementation can then leverage this locality to automatically distribute data and threads across
the physical machine by using a set of high performance migration mechanisms.

An implementation of this architecture could migrate a null thread in 66 cycles – over a factor
of 1000 improvement over previous work. Performance also scales well; the time required to move
a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and
scales linearly with data block size. Since the performance of the migration mechanism is on par
with that of an L2 cache, the implementation simulated in my work has no data caches and relies
instead on multithreading and the migration mechanism to hide and reduce access latencies.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist

3



4



Acknowledgments

I would like to thank my parents for all their love and support over the years, and for their unwaxing

encouragement and faith in my ability to finish the degree program.

I would also like to thank my wonderful, loving, caring girlfriend Nikki Justis for all her support,

motivation, patience, editing, soldering, discussion and idea refinement, cooking, cleaning, laundry

doing, driving me to campus, wrist massages, knowing when I need to tool and when I need to take

a break, tolerance of my 7 AM sleep schedule, and for letting me make a mess in her room and take

over her couch with my whole computer setup.

I would like to thank all my friends for their support over the years, and for making the past

decade at MIT–and my first step into the real world–an exciting, fun and rewarding experience. Let

the rush begin...and may it never end.

This thesis would never happened if it were not for the Aries Research Group (in order of se-

niority): Tom Knight, Norm Margolus, Jeremy Brown, J.P. Grossman, Josie Ammer, Mike Phillips,

Peggy Chen, Bobby Woods-Corwin, Ben Vandiver, Tom Cleary, Dominic Rizzo, and Brian Gins-

burg. Tom Knight, in particular, has been a role model for me since I came to the lab; he is an

endless source of inspiration and knowledge, and has provided invaluable guidance, counsel and

encouragement. He is brilliant and visionary, yet humble and very accessible, and always willing to

answer my questions, no matter how silly or stupid. I also really enjoy hislaissez-fairepolicies with

respect to running the group; I truly treasure the intellectual freedom Tom brought to the group,

and his immense faith in all of our abilities to manage and organize ourselves, and to “go forth and

think great thoughts.” Jeremy Brown and J.P. Grossman were also invaluable for their good ideas,

lively conversation, and idea refinement. Jeremy invented the idempotent network protocol used in

this thesis, and his excellent thesis work in novel parallel programming methods and scalable par-

allel garbage collection fills in many crucial gaps in my thesis. J.P. and Jeremy also developed the

capability representation with SQUIDS that is central to my thesis. I also relied on J.P.’s excellent

work in researching and characterizing various network topologies and schemes; I used many of his

results in my implementation. Bobby Woods-Corwin, Peggy Chen, Brian Ginsburg and Dominic

Rizzo were invaluable in working out the implementation of the network. Without them, I would

have nothing to show for this thesis except for a pile of Java code. Two generations of M.Eng the-

ses and two UROPs is a lot of work! Norm Margolus also helped lay down the foundations of the

architecture with his work in spatial cellular automata machines and embedded DRAM processors.

5
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Chapter 1

Introduction

You can’t fake memory bandwidth that isn’t there.

—Seymour Cray on why the Cray-1 had no caches

Most data and thread migration mechanisms to date are slow when compared to other latency man-

agement techniques. This thesis introduces an architecture, ADAM, that enables a simple hardware

implementation of data and thread migration. This implementation reduces the overhead of migra-

tion to the point where it is comparable to other hardware-assisted latency management techniques,

such as caching.

Data migration is useful to reduce access latencies in situations where the working set is larger

than cache. It is also useful in reducing or redistributing network traffic in situations where hotspots

are caused by contention for multiple data objects. Data migration can also be used to emulate the

function of caches in systems that feature no data caches.

Thread migration is useful to reduce access latencies in situations where multiple threads are

contending for a single piece of data. Like data migration, it is also useful in situations where

hotspots can be alleviated by redistributing the sources and destinations of network traffic. Thread

migration is also useful for load-balancing, particularly in situations where memory contention is

low.

Data and thread migration can be used together to help manage access latencies in situations

where many threads are sharing information in an unpredictable fashion among many pieces of

data, as might be the case in an enterprise database application. Data and thread migration can also

be used to enhance system reliability as well, if faults can be predicted far enough in advance so

that the failing node can be flushed of its contents.
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1.1 Contributions

The primary contribution of my thesis is afast, low-overhead data and thread migration mech-

anism. In terms of processor cycles, the mechanism outlined in my thesis represents greater than a

1000-fold increase in performance over previous software-based migration mechanisms. As a result,

data and thread migration overheads are similar to L2 cache fills on a conventional uni-processor

system.

The key architectural features that enable my data and thread migration mechanisms are auni-

fied thread and data representation using capabilitiesand interthread communication and

memory access through architecturally explicit queues. Threads and data in my architecture,

ADAM, are accessed using a capability representation with tags that encode base and bounds infor-

mation. In other words, every pointer has associated with it the region of data it can access, and this

information trivializes figuring out what to move during migration. Architecturally explicit queues,

on the other hand, simplify many of the ancillary tasks associated with migrating threads and data,

such as the movement of stacks, the migration and placement of communication structures, concur-

rent access to migrating structures, and pointer updates after migration.

My thesis also describes animplementation outline of ADAM dubbed the “Q-Machine”. The

implementation technology is presumed to be 35 nm CMOS silicon, available in volume around

2010, and features no data caches; instead, it relies on the migration mechanism and multithreading

to maintain good performance and high processor utilization. The proposed implementation is sim-

ulated with the ADAM System Simulator (ASS); it is this simulator that provides the results upon

which the ADAM architecture is evaluated. Note that there is no requirement for advanced tech-

nology to implement the ADAM; one could make an ADAM implementation today, if so desired.

The 2010 technology point was chosen to evaluate the ADAM architecture because it would match

a likely tape-out time frame of the architecture’s implementation.

1.2 Organization of This Work

Chapter 2, “Background”, discusses some of the advantages and disadvantages of a migration

scheme over more conventional latency management schemes. It also reviews, at a high level, some

of the problems encountered in previous migration schemes; a more detailed review of migration

mechanisms is presented in Chapter 4. Chapter 2 closes with a differentiation of this work from

its predecessors in a brief discussion of the architectural pedigree of the ADAM and its Q-Machine
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implementation.

Chapter 3, “Aries Decentralized Abstract Machine”, describes the ADAM in detail. This chapter

lays the foundation for the programming model of the ADAM through a simple code example,

followed up with a discussion of the architectural details relevant to a migration implementation. A

detailed discussion of other architectural features can be found in Appendix B.

Chapter 4, “Migration Mechanism in a Decentralized Computing Environment”, presents the

implementation of the migration mechanisms. The chapter begins with a survey of previous work

involving data and thread migration; this survey includes both mechanisms and migration control al-

gorithms, since their implementation details are intimately associated. I then describe the migration

mechanism in detail.

Chapter 5, “Implementation of the ADAM: Hardware and Simulation”, describes an implemen-

tation of ADAM. This implementation is known as the Q-Machine. This chapter summarizes the

machine organization and implementation technology assumptions of the simulator used to evaluate

my migration mechanisms.

In the next chapter, “Machine and Migration Characterization” (Chapter 6), I characterize the

performance of the implementation. The chapter starts with two simple micro-kernel benchmarks

and some formal analysis of the migration mechanism. Then, I present results for some more

comprehensive benchmarks, Quicksort, Matrix Multiply and N-Body, with simple migration control

heuristics driving the migration mechanisms.

The thesis concludes in chapter 7 with a discussion of further developments for the ADAM

architecture, areas for improvement and further research, and programming languages for the ma-

chine. Note that while a detailed discussion of programming languages for the ADAM is outside the

scope of this thesis, I did not work in a programming language vacuum. A strong point of using an

abstract machine model is that compiler writers can begin their work on day one, and in fact, that is

the case. Benjamin Vandiver, an M.Eng student in my research group, has developed two languages,

CouatlandPeople, and compilers for these languages to the ADAM architecture. Couatl is a basic

object-oriented language that we used in the early stages of architecture development to hammer

out the abstract machine model and to determine the unique strengths and weaknesses of a queue

based architecture. The follow-on language, People, is a more sophisticated language supporting

streaming constructs that leverages the availability of architectural queues at the language level. I

refer interested readers to his M.Eng thesis [Van02].

A summary of the abstraction layers employed by this thesis can be found in figure 1-1. ADAM
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is a pure abstraction, a boundary between compilers and hardware. Q-Machine is the implemen-

tation of ADAM that realizes the fast data and thread migration mechanisms made possible by

ADAM. The ADAM System Simulator (ASS) is my software simulation of the Q-Machine, written

in Java. The Q-Machine could also be implemented directly in hardware, but that is not within the

scope of this thesis.

Aries Decentralized Abstract Machine (ADAM)

Couatl People

Q-Machine (Migration
Implementation)

ADAM System
Simulator (ASS)

Java Virtual
Machine

Hardware

End-User Applications

compilers

"hardware"
Direct Hardware
Implementation

thesisstructure.eps

Figure 1-1: Overview of the abstraction layers in this thesis. Couatl and People are compilers
written by Ben Vandiver.

I also provide a set of appendices that describe various technical nits of the architecture, includ-

ing the bit-level details of the ADAM architecture, physical queue file (PQF) implementation, the

network interface implementation, network protocols, and opcodes of the ADAM.
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Chapter 2

Background

TSMC sees no insurmountable challenges in the path to scaling
[silicon CMOS technology] to the 9 nm node. The question is,
will the market be ready for it?

—Calvin Chenming Hu, CTO of TSMC at a talk at MIT

This chapter starts by characterizing the ADAM architecture in terms of its use of latency manage-

ment techniques. This chapter then discusses in greater detail a comparison of various migration

techniques. Finally, this chapter closes with a discussion of ADAM’s architectural pedigree.

2.1 Latency Management Techniques

Numerous latency management techniques are available to computer architects looking to design

large parallel machines. Latency management techniques can be divided into two broad categories,

latency reduction, and latency hiding.

2.1.1 Latency Reduction

Latency reduction techniques include architectural trade-offs to optimize local memory access la-

tency, such as non-uniform memory access (NUMA) and cache-only memory architecture (COMA).

NUMA architectures cope with the spatial reality of large machines explicitly; thus, local memory

references are faster than remote memory references. This is in contrast with bus-based architec-

tures that have uniform memory access times. NUMAs typically employ spatial interconnection

networks that are inherently more scalable than bus-based architectures. While NUMAs enable bet-

ter scalability, they are confronted with the issue of how to arrange data so that optimal performance
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is achieved. One popular method of addressing the data placement issue is to use a directory-based

cache coherence mechanism. Examples of cache-coherent NUMAs (ccNUMAs) include Stanford’s

DASH [LLG+92], and MIT’s Alewife [ABC+95]. COMAs, on the other hand, feature automatic

data migration through the use of “attraction memories”. COMAs also employ spatial intercon-

nection networks that feature non-uniform memory access times, but in a COMA, memory has no

home location. Data migrates in a cache-coherent fashion throughout the machine to their points of

access. COMAs have the disadvantage of extra hardware complexity, but have an advantage over

NUMA machines when the working set of data is larger than the NUMA’s cache size. The ADAM

architecture is similar to a COMA architecture, except that ADAM also features thread migration,

and that there are no caches–in other words, there can be only one valid copy of a piece data in the

machine. Removing cache semantics from memory reduces the hardware requirements, but causes

ADAM to lose the benefit of automatic data replication. ADAM attempts to compensate for this

loss by providing a hardware-recognized immutable data type that is write-once and can be freely

copied throughout the machine. Thread migration also helps compensate for this loss by allowing

threads that contend heavily for a single piece of memory to migrate toward the contested memory

location.

Latency reduction can also be applied at a lower level, through migration, replication, schedul-

ing, placement and caching. Replication is a property inherent in cache-coherent memory systems

where memory can be marked as exclusive or read-only, and several copies can exist throughout

the machine to reduce the perceived access latency at multiple nodes. As mentioned previously,

ADAM provides only limited support for data replication. Scheduling and placement are predictive

techniques that attempt to reduce latency and balance loads by allocating memory and scheduling

threads to be near each other. Scheduling and placement can be either directed explicitly by a pro-

grammer, inferred and statically linked in by a compiler, or directed by an intelligent runtime system.

Scheduling and placement are important latency reduction techniques in any architecture, but are

outside the scope of my thesis. A thorough discussion and comparison of migration techniques is

reserved for later in this chapter and in chapter 4.

Caching is perhaps the most widely used latency reduction mechanism. Caches reduce memory

latency by keeping the most recently accessed values in a fast memory close to the processor. Caches

rely on the statistically good spatial and temporal locality characteristics of data accesses found in

most programs. Caches also rely on exclusive ownership of data; since a copy is made of data in

main memory, a coherence mechanism is required for correct program execution in an environment
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where concurrent modification is a possibility. This coherence mechanism can present a challenge

when scaling up to very large multiprocessor machines. In particular, simple directory-based or

snoopy coherence mechanisms show poor scalability. Snoopy coherence mechanisms are used in

bus-based multiprocessors, and suffer from bandwidth limitations due to excess coherence traffic as

systems scale in size. Directory-based protocols are more scalable, but they also have their limits.

With a 64-byte block size, a simple directory-based cache coherence protocol has a memory over-

head of over 200% for a 1024-processor system [CS99], p.565. Techniques such as limited-pointer

schemes [ASHH88], extended pointer schemes [ALKK91], and sparse directories [GWM90] can

all be used to mitigate the overhead of cache coherence in large parallel systems, but at the cost of

more complex protocols or the need for special mechanisms to handle corner cases where the pro-

tocol breaks down. The other problem with caches is that technology scaling is not ideal; buffered

wire delays have been rising slightly faster than expected, and the expected capacity of caches per

access time is anticipated to decrease as process technologies progress [AHKB00] [McF97]. Fig-

ure 2-1 illustrates the fallout of non-ideal wire delay scaling. Since the ADAM architecture already

features data migration for latency reduction and can tolerate more access latency due to its use of

multithreading and decoupling, no data caches are used in the ADAM implementation outlined in

this thesis. The elimination of data caches alleviate the scaling concerns of data caches, and it also

helps relieve some of the access time pressure resulting from technology constraints. The down-

sides of this decision include slower single-threaded code execution and the loss of automatic data

replication inherent in cache coherence schemes. Note that the ADAM implementation, as previ-

ously mentioned, compensates for this loss of data replication in part by providing an immutable

data type, and in part by migrating threads toward heavily contested memory locations.

2.1.2 Latency Hiding

Latency hiding techniques include prefetching, decoupling, multithreading, relaxing memory con-

sistency, and producer-initiated communication.

Prefetching is the use of predictive mechanisms, either automatic or explicit, to access data

before a computation requires the data. The efficacy of prefetching is proportional to the accuracy

of the predictive mechanism. When the predictive mechanism is wrong, the system can potentially

pay a high cost, because improperly prefetched data could displace useful data while consuming

bandwidth that could be used for other useful work. Prefetching can be applied in the ADAM

architecture, but its implementation is beyond the scope of this thesis.
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Figure 2-1: Reachable chip area in top level metal, where area is measured in six-transistor SRAM
cells. Directly from [AHKB00]

Decoupling is the use of explicit queues to hide access or compute latencies. Decoupling is

featured in decoupled access-execute (DAE) machines, such as the ZS-1 [SDV+87], the WM ar-

chitecture [Wul92] and the MT-DCAE [SKA01]. Decoupled architectures can be thought of as a

type of programmed prefetch architecture, although the decoupling mechanism can also be used

to decouple control flow events as well. In a simple DAE architecture, processors are divided into

access and execute units, coupled by a set of queues. The access unit is allowed to “slip” ahead of

the execute unit, effectively prefetching data for the execute unit. Since the ADAM uses explicit

queues to communicate with threads and to access memory, ADAM shares many of the benefits and

problems of DAE architectures.

Multithreading is the use of multiple thread contexts and a fast context switching mechanism

to hide memory access latencies. When one thread context stalls on a dependency that requires a

lengthy memory access, another thread context is swapped in, thus maintaining a high level of pro-

cessor utilization. However, multithreading can only effectively hide memory latency if there are

enough runnable contexts. As latencies increase, more parallelism is required. The HEP [Smi82a]

and TERA [AKK+95] architectures apply multithreading to hide access latencies; the ADAM ar-

chitecture uses this technique as well.

Relaxed memory consistency models and producer-initiated communication are architectural

and programmer-level methods for hiding latency. Relaxing memory consistency models hides

latency by allowing systems greater flexibility in hiding write latencies [LW95]. The choice of

memory consistency model has a great impact on how a machine is programmed (or compiled to).
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The ADAM uses a weak ordering model [DS90] similar to that employed in the Alpha [CS99]. Of

course, each thread is guaranteed that writes and reads complete in program order on the ADAM

as well. Producer-initiated communication reduces latency by cutting out one half of a round trip

when the producer and consumer relationships are well-defined. Instead of a consumer sending a

message to request data and waiting for the response, producer-initiated communication pushes data

into a consumer’s cache or queue. In a cache-coherent system, this can lead to higher coherence

traffic because all shared copies have to be updated on every write [LW95]. In ADAM, producer-

initiated communication is the only mode of communication when using mapped queues. There is

no coherence overhead for this style of communication in ADAM because the queue namespace is

separate from memory namespace, and all queue mappings are exclusive by definition.

2.2 Migration Mechanisms

Migration mechanisms tend to be tailor-made to a particular architecture, operating system, or ap-

plication. As a result, the features of migration schemes are equally diverse. For example, in

a network-of-workstations (NOW), migration mechanisms tend to operate on coarse-grained pro-

cesses and objects. Migration on NOWs tend to be under dynamic run-time control, and migration

times are on the order of tens to hundreds of milliseconds. [RC96] On the other hand, computation

migration on Alewife [HWW93] implements structured activation frame movement throughout the

machine using statically compiled migration directives, yielding migration times on the order of

several hundreds of processor cycles.

At the least common denominator, every migration mechanism must do the following things:

figure out what to move, prepare the receiver, send the data, and then handle any forwarded requests

or pointer updates. Thread or process migration schemes also have to handle task scheduling is-

sues as well. Process migration in NOWs is incredibly inefficient and slow because the abstraction

boundary for processes is too high; for example, moving a process entails creating a virtual address

space and moving file handles. [RC96] introduces a faster, more streamlined version of process

migration that removes the restriction that communication producers be frozen during consumer

migration (i.e., enables concurrent communication during migration), but even then process migra-

tion takes 14 ms. [CM97] also introduces faster techniques for dealing with pointer updates after

migration using explicitly managed pointer registries. The problem with explicitly managed pointer

registries, however, is that incorrect program execution results if the programmer forgets to register
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a pointer. DEMOS/MP [PM83], interestingly, is a multi-processor operating system introduced over

a decade before either [RC96] or [CM97], and it features automatic pointer updating and concurrent

communication during process migration. DEMOS/MP features explicit OS-managed communica-

tion queues for inter-process communication; this helps enable concurrent communication during

process migration and simplifies pointer updates because the migration manager does not have to

make guesses or conservative assumptions about the process communication mechanism. Unfor-

tunately, the DEMOS/MP paper contains little performance information on its process migration

mechanism, so it is more difficult to compare DEMOS/MP against other works. The ADAM thread

migration mechanism implements many features of the DEMOS/MP migration mechanism, except

at a finer grain and with hardware support.

On SMP-type machines, migration times are shorter, thanks to the tighter integration of network

interfaces and processors, generally faster interconnection networks, finer granularity of objects, and

globally shared system resources. Page migration in DASH, for example, takes 2 ms (about 66,000

memory cycles) [CDV+94]. This does not include the time spent waiting for locks in the kernel’s

virtual memory system; the paper indicates that the response time for workloads were not improved

because of this overhead. Even if one could migrate threads in DASH by simply throwing a pro-

gram counter over the fence to another processor, the overhead of migrating the thread’s associated

process state–the stack and heap–would be fairly large, since at least two memory structures have to

be moved, perhaps at the page level of granularity. Thus, the thread scheduler should be aware of a

task’s memory footprint, and use cache affinity scheduling to achieve good performance. [CDV+94]

Active Threads [WGQH98] introduces user-space thread migration, so as to bypass the overhead

of migrating kernel threads. In addition, Active Threads uses simple user-space messaging protocols

for communication, to cut the overhead of copying messages and buffers in OS space. User-space

thread migration reduces thread migration latencies down to about 150�s (about 16,000 processor

cycles). Computation Migration [HWW93] also performs users-space thread migration, but in a

more restrictive fashion. In Computation Migration, static annotations in user code cause a thread

to spawn new procedures on remote nodes; also, [HWW93] makes no indication that inter-thread

communication resources are migrated. A single thread thus snakes its way through the machine,

with a trajectory that tracks the location of the working set of data. Computation Migration is fast,

as it requires only 651 cycles to start a new thread on a remote processor. Even so, a breakdown

of the costs of Computation Migration indicate that a large amount of time is spent in procedure

linkage, thread creation, and marshaling thread state. As a side note, Computation Migration is
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not used as the comparative benchmark for ADAM’s migration mechanism because Computation

Migration implements a restricted version of thread migration that does not accommodate the level

of dynamism or concurrency found in the next fastest migration implementation, Active Threads.

Hence, Active Threads is used as the comparison point for ADAM’s migration mechanism.

Note that this brief review of migration mechanisms is expanded upon in the background section

of chapter 4.

2.2.1 Discussion

The ADAM architecture structures threads, data, and their communication mechanisms in such a

way as to eliminate or drastically reduce the overheads experienced by the migration mechanisms

outlined above. For example, almost all migration mechanisms have to deal with pointer updates and

message forwarding. The issue is that interthread communications almost always use memory re-

sources, so that any thread migration requires movement of stacks, OS structures, or heap-allocated

communication structures. The ADAM architecture condenses communication structures into ex-

plicitly named resources through the use of explicit queues. As a result, communication state is

stored as part of thread state, and migration of a thread typically involves a single copy operation.

The use of bounded capabilities to represent a thread’s state in memory, as well as all heap data

structures, also simplifies migration, because the region of memory to be copied during migration

can be directly computed given a pointer to a thread or data object. The use of bounded capabilities

also offers more flexibility in the choice of migration granularity when compared to schemes that

require page-level migration, such as that used in DASH [CDV+94]. Another benefit of bounded

capabilities is that false data sharing is not possible. For example, in a conventional system two

objects can, by random chance, share a cache line or a page of memory (see figure 2-2). If the two

memory objects are concurrently accessed by threads on different nodes, the cache line or page of

memory will either end up ping-ponging between the nodes, or one thread will have to suffer un-

fair access times. On the downside, bounded capabilities does not help when a programmer writes

code that that explicitly shares objects among many scattered threads. In this case, thread migration

should be used to minimize access latencies.

27



object A

object B cache line or memory
page experiencing

"false sharing"

one cache line or
page of memory

falseshare.eps

Figure 2-2: Illustration of the false sharing problem.

2.3 Architectural Pedigree

The genesis of the ADAM architecture lies in the Dataflow architectures, Decoupled-Access/Execute

(DAE) architectures, Processor-In-Memory (PIM) and Chip Multi-Processor (CMP) architectures,

and Cache Only Memory Architectures (COMA).

2.3.1 Dataflow

ADAM is perhaps most closely related to the dataflow family of architectures, in particular, *T.

Hence, a careful examination of the dataflow machines is important at this time.

Dataflow machines are a direct realization of dataflow graphs into computational hardware.

Arcs on a dataflow graph are decomposed into tokens. Each token is a continuation; it contains

a set of instructions and its evaluation context. The length of the instruction run and evaluation

context method encapsulated within a token can characterize the spectrum of dataflow architec-

tures. In the MIT Tagged-Token Dataflow Architecture (TTDA), each token represents roughly one

instruction and its immediate dependencies and results, and token storage is managed implicitly.

TTDA evolved into the Monsoon architecture, which has explicit evaluation context management

and single-instruction tokens. With Monsoon, tokens contained a value; pointers to an instruction,

and pointers to evaluation contexts that are compiler-generated frame allocations in a linearly ad-

dressed structure. Monsoon evolved into the P-RISC and *T architectures, which are machines

with tokens that effectively refer to instruction traces and relatively large ”stack-frame” style ex-

plicitly allocated frames. The tokens in P-RISC and *T carried only an instruction pointer and a

frame pointer, as opposed to any actual data [AB93] [NA89]. One could take this one step further

and claim that a Simultaneous Multithreading (SMT) architecture is a dataflow machine with as
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many tokens as there are thread contexts, and that a conventional Von Neumann architecture is a

single-token dataflow machine. [LH94] provides an excellent overview of dataflow machines and

an analysis of their shortcomings.

Dataflow machines, while elegant, have a few fatal flaws. Their evolution from the TTDA

into near-RISC architectures provides a clue into what these flaws are. The rather abstract TTDA

decomposed dataflow graphs to a near-atomic instruction level. Thousands of tokens are created

in the course of even a simple program execution, because tokens can be formed and dispatched

before dependencies are resolved. [AB93] states that “these tokens represent data local to inactive

functions which are awaiting the return of values undergoing computation in other functions invoked

from within their bodies”. The execution of any token required an associative search across the space

of all tokens for the tokens that held the results that satisfied the current token’s data dependencies.

The multi-thousand element associative structure required to do this search is not implementable

even after twenty years of process scaling.

Another flaw of the early Dataflow machines is that every token represents a high-overhead

synchronization event. [Ian88] points out that von Neumann architectures also perform a synchro-

nization event between each instruction, but the method of synchronization is very light-weight: IP

= IP + 1 or IP = branch target. This allows von Neumann architectures to grind through straight-

line code very quickly. Fortunately for the von Neumann crowd, most code written to date can be

straightened out sufficiently with either branch prediction or trace scheduling to get good perfor-

mance out of such a system. P-RISC and *T leveraged this strength of von Neumann architectures

somewhat by allowing a token to represent what are essentially an execution trace and a stack frame.

*T actually has a very similar single-node architecture to the ADAM: it divides a single node into

a synchronization coprocessor and a data processor. The synchronization processor is responsible

for scheduling threads and dealing with synchronization issues, while the data processor’s exclu-

sive job is to execute straight-line code efficiently. However, the similarity ends there, as the *T

architecture focuses primarily on latency hiding through rapid and efficient thread scheduling, start-

ing, and context switching. While latency hiding through multithreading is an important part of the

ADAM architecture, it is also very important to reduce latency by providing mechanisms for the

efficient migration of data and threads between processor nodes. The ADAM’s overall organization

reflects this attention to migration mechanisms. Also, a careful examination of the implementation

strategy outlined in [PBB93] reveals a number of important differences (and similarities) between

the ADAM and *T. One significant difference is ADAM’s use of a queue-based interface between
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threads, with implicit synchronization through empty/full bits, similar to the scheme used in the M-

Machine [FKD+95]. *T uses a register-based interface with a microthread cache to enable efficient

context switching, and explicit, program-level handling of messages that could not be injected into

the network. The use of self-synchronizing queues of an opaque depth in ADAM helps cushion

network congestion and scheduling hiccoughs.

2.3.2 Decoupled-Access/Execute

Decoupled-access/execute (DAE) machines are single-node processors with separate execute and

access engines. These engines are coupled with architecturally visible queues that are used to hide

memory access latencies. Code for these machines are typically broken down by hand or compiler

into an access and execute thread; latencies are hidden because the access thread, which handles

memory requests, can ”slip” ahead of the execute thread. Relatively few machines have been built

that explicitly feature DAE. The architecture was first proposed in [Smi82b] and later implemented

as the Astronautics ZS-1 [SDV+87]. [MSAD90] characterizes the latency-hiding performance of

the ZS-1 in detail, and [MSAD91] compares the performance of the ZS-1 to the IBM RS/6000. A

comparison of DAE versus superscalar architectures can be found at [FNN93], and a comparison

of DAE versus VLIW architectures can be found at [LJ90]. Another proposed DAE architecture

is the WM Architecture [Wul92], and a novel twist on DAE architectures where the access unit is

actually co-located with the memory is proposed in [VG98]. The architecture described in this work

parallels many of the ideas in [VG98].

The basic message contained in all the previously cited papers is that by judiciously dividing

a processor into two spatially distributed processors, greater than 2x performance gains can be re-

alized. This super-linear speedup results from latency that was architecturally bypassed by either

allowing the memory subsystem to effectively slip ahead and prefetch data to the execution unit,

or by physically co-locating the access unit with the memory. DAE ideas can actually be applied

generically to any machine with a large amount of explicit parallelism by simply dividing every

program into two threads, an access thread and an execute thread. The advantage of explicit DAE

machines is that the synchronization between the access and execute threads is very fast because

they are coupled via hardware queues, as opposed to software emulated queues. Some conventional

out of order execution machines also provide a certain amount of implicit access/execute decou-

pling via deep, speculative store and load buffers. However, in general, conventional architectures

that emulate these queues in software pay a high price for synchronization overhead. Software im-
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plementations that use polling to check empty bits pay the overhead of polling plus any time lost

between the actual data availability event and the poll event. Interrupt-driven implementations are

also expensive because typical interrupt mechanisms require kernel intervention.

Another important message is that queues are like bypass capacitors for computer architectures.

Queues low-pass filter the uneven access patterns of high-performance code and help decouple the

demand side of a computation from the supply side of a computation. Like bypass capacitors, the

time constant of the queue (i.e., the size of the queue) has to be sufficiently large to filter out the

average spike, but not so large as to reduce the available signal bandwidth and hamper important

tasks such as context switching. The overhead of the queue structure must also be small so that the

benefits of queuing can be realized.

Unfortunately, simple DAE machines as a whole suffer from a few problems. There are no

compilers that generate explicit access and execute code streams; most benchmarks and simulations

in the cited papers were with hand-coded access and execute loops. Also, the effectiveness of DAE is

questionable on complicated loops and programs with complicated and/or dynamic dataflow graphs.

Simple DAE is targeted at hiding memory latencies, and not much else. However, the basic idea

of decoupling access and execute units is a powerful one; especially if the physical access and

execute units are allowed to be assigned dynamically to a single virtual control thread, as is the

case in ADAM. Creating these “virtual” DAE machines allows access and execute units to migrate

throughout the machine and optimize latency on a thread by thread basis. A sufficiently flexible

infrastructure would also allow several execute units to be chained together, thus providing a kind

of loop unrolling and a facility for streaming computations without any modification to the code.

Because this chaining is dynamic, such a machine could be upgraded to have more processors and

a greater performance would be realized without recompiling the code. This idea of a virtual DAE

architecture is an important part of the ADAM architecture.

2.3.3 Processor-In-Memory (PIM) and Chip Multi-Processors (CMP)

Recent advances in process technology have made it possible to integrate a sufficient amount of

SRAM on-chip to make a single-chip stand-alone processor node. Also, the availability of DRAM

embedded on the same die as a processor opens the door to even higher levels of memory integra-

tion [Corb] [Mac00] [Cora]. This integration of processors and memory on a single die is referred

to as Processor-In-Memory (PIM). The fact that the memory is included on the same die as the

processor implies a power and performance advantage due to the elimination of chip-chip wiring
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capacitances and wire run lengths. It also offers a performance advantage because more wires can

be run between the memory bank and the processor than in a discrete processor-memory solution.

As process technology continues to improve, it will be possible to put several processor cores plus

memory on a single silicon die. This style of implementation is known as a Chip Multi-Processor

(CMP). A paper that summarizes some of the key arguments for CMP architectures can be found

in [ONH+96]. Some architectures that have been proposed which take advantage of some combina-

tion of embedded memory technology and chip multiprocessor technology include RAW [LBF+98],

I-RAM [KPP+97], Active Pages [OCS98], Decoupled Access DRAM [VG98], Terasys [GHI94],

SPACERAM [Mar00], and Hamal [Gro01].

The level of performance available to users of embedded DRAM is remarkable. Traditionally,

DRAM is thought of as the sluggish tanker of memory, while SRAM is the speed king. A recent

DRAM core introduced by MoSys (the so-called 1-T SRAM), available on the TSMC process,

has proven that DRAM has a place in high performance architectures [Cora]. The 1-T SRAM is

based on a DRAM technology, but has a refreshless interface like a SSRAM (synchronous SRAM).

The performance of this macro is also sufficiently high – 2-3 cycle access times at 450 MHz in a

0.13�m process – to entirely eliminate the need for data caches in the processor design. Note that

the processor frequency targets for ADAM is on par with compiled “soft core” processor frequency

targets, which is typically a factor of 2-4 below the level of the full-custom processors developed

by Intel, AMD, and Compaq. The ADAM is assumed to be implemented using a portable RTL

design flow, optimized for fast design cycles and portability to the latest process technology offered

by foundries. The reduced implementation time and the CMP architecture of the ADAM helps

compensate for the performance penalty of using a compiled design flow. Finally, because the 1-

T SRAM has the memory cell structure of DRAM, the density of these macros is similar to the

embedded DRAM macros offered in other processes (2.09 mm2 per Mbit for a DRAM macro on

IBM’s Cu-11 process [Mac00] versus 1.9 mm2 per Mbit for a MoSys macro on a TSMC 0.13�m

logic process [Cora]).

The ADAM architecture leverages both the high level of logic integration available in future

process technology and the availability of off-the-shelf, fast, dense memories to create a distributed

massively parallel architecture with good single-threaded code performance.
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2.3.4 Cache Only Memory Architectures

While the architecture proposed in this thesis has no data caches, one could argue that the speed of

the memories used in the processor nodes qualifies them as program-managed caches. Hence, it is

important to look at the class of machines known as Cache Only Memory Architectures (COMA).

The most relevant machine in this class in the Data Diffusion Machine (DDM) [MSW93]. The

DDM relies on data migration through the implicit semantics of caches. Because this work is so

closely tied to data migration and its control, a thorough discussion of how ADAM relates to the

DDM is deferred until section 4.
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Chapter 3

Aries Decentralized Abstract Machine

While Newton is to have said (sarcastically, in truth, but that’s an-
other story) that he saw farther by standing on the shoulders of
giants, most of us squat on the kneecaps of pygmies. But that is
meant in the nicest possible way.

—Thomas H. Lee, ISSCC 2002 Panelist Statement

The Aries Decentralized Abstract Machine (ADAM) is an abstract parallel computer architecture

optimized for, among other things, fast data and thread migration. This chapter presents an overview

of the architecture, highlighting the salient features that enable the implementation of high perfor-

mance migration. A simple code example is presented first, to acquaint readers with basic ADAM

communication and memory abstractions. The example is followed by a more formal, in-depth

discussion of various features of the ADAM.

3.1 Introduction to ADAM by Code Example

ADAM has a fine-grained multithreaded programming model. Inter-thread communication and

memory access is accomplished via explicit queue resources. Also, memory is abstract; pointers are

represented as capabilities with base and bound tags. Programmers cannot create capabilities; they

must request one from the machine via anALLOCATEopcode.

3.1.1 Basics

A simple program example that illustrates the salient features of the architecture can be seen in

figure 3-2. This code illustrates procedure linkage, capability allocation, and memory mappings.
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MOVEC 2, q0 ; initialize q0 with the number 2
MOVEC 1, q1
MOVEC 4, q1 ; initialize q1 with the numbers 1 and 4
ADD @q0, q1, q2

; at this point, q2 has 3, q0 has 2, q1 has 4
ADD q0, q1, @q2

; at this point, q0 is empty, q1 is empty, and q2 has 6

Figure 3-1: Demonstration of the copy/clobber (@) modifier.

The basic format of assembly opcodes isOP qa,qb,qc , whereOPis the operation,qa andqb

are the arguments, andqc is the result. Every operation may have zero, one or two arguments,

and one of the arguments may be a constant. There are also some important opcodes that do not

follow this format, such asMAPQC, that will be discussed soon. Also note that every queue specifier

can be modified with an@(copy/clobber) modifier. Figure 3-1 demonstrates the operation of the@

modifier. On reads, an@specifies that the instruction should copy the value from an argument queue,

instead of dequeuing it. On writes, an@specifies that the instruction should overwrite (“clobber”)

the newest value in a queue, if there is one, instead of enqueuing a value. If the destination queue is

empty, the@operator has no effect. The@operator is handy when dealing with temporaries that are

reused frequently; without it, any time a result is used more than once, the programmer or compiler

would have to include a special instruction to duplicate values.

3.1.2 Calling Convention

In ADAM, the calling convention is that every procedure is a new thread. Arguments and return

values are passed via queue mappings. The code in figure 3-2 demonstrates this calling convention.

The caller,main , callstestStub by executing aSPAWNC q2,testStub,q0 instruction. This

instruction starts a new thread with its program counter set to the labeltestStub and returns the

new thread’s context ID inq0 . The argumentq2 is thespawn metric; this lets the programmer

control the placement of new threads. In this case, the spawn metric was initialized to 1, which

causes the new thread to be started on some node one network hop away.

After creating the new thread, the caller maps a queue into the callee’s queue space to initiate

argument passing.Mapping a queuecauses values written into the mapped queue to appear eventu-

ally in the map target. The storage location of data written into a mapped queue is the map target.

Also, communication via queue maps is push-only; one cannot read from a mapped queue. Hence,
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main:
MOVECC 1, q2 ; set spawn metric to 1
SPAWNC q2, testStub, q0 ; spawn remote thread
MAPQC q1, q0, @q0 ; map to my child
PROCID q1 ; send my procID to child
MOVE q20, q22 ; wait for return value from child
MML q40, q41 ; declare q40, q41 as load queues
MOVE @q22, q40 ; initialize q40 w/capability
MOVECL 0, q40 ; retrieve data from offset 0
PRINTQ q41 ; print it (sim specific instruction)
HALT

testStub:
MOVE q0, q100 ; store caller in q100
MAPQC q1, q20, @q100 ; my q1 -> q20 of my caller
MOVECC 0, q2 ; set allocate metric to 0
ALLOCATEC q2, 8, q10 ; allocate 8-word local capability
MMS q30, q31 ; declare q30, q31 as store queues
MOVE @q10, q30 ; init q30 w/capability
MOVECL 0, q30 ; store data 10 at offset 0
MOVECL 10, q31
MSYNC ; ensure that the store has committed
MOVE @q10, q1 ; send the capability to my caller
HALT

Figure 3-2: Simple code example demonstrating procedure linkage, thread spawning, memory allo-
cation, and memory access.
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once a queue is mapped, it is write-only; a read from a mapped queue results in undefined behavior.

In this example, the new thread expects all of its arguments inq0 , so the caller maps to the new

thread using the instructionMAPQC q1,q0,@q0. Note that theMAPQCinstruction has unusual

semantics. The first two arguments are actually immediate constants; in other words, they are inter-

preted as simply queue numbers, and not as sources for operands. The first value,q1 , specifies the

local queue to be mapped. The second value,q0 , specifies the queue number of the map target. The

final argument,@q0, specifies the queue from which to read the map target’s context ID. I chose

the first two values to be constant values because programmers or compilers typically know exactly

what the source and destination queue numbers of a mapping should be.

Now that the caller has mapped the argument queue to the callee, the caller first passes its

context ID to the callee. Upon receiving the caller’s context ID, the callee maps a return queue back

to the caller. In this example, the caller and callee agree by convention thatq20 is the return value

queue. Figure 3-3 illustrates the state of the caller and callee after setting up the argument and return

queues.

3.1.3 Memory Allocation and Access

The next set of instructions in our code example demonstrate memory allocation and access. Mem-

ory allocation in ADAM is accomplished with theALLOCATEinstruction, and memory access is

accomplished through queue mappings.

In this particular example, the instructionALLOCATEC q2,8,q10 is used to create a new

capability. q2 is an allocation metric similar to the spawn metric used by theSPAWNCopcode. In

this case,q2 is initialized to 0, so this instruction is requesting the allocation of local memory.

The next instruction,MMS q30,q31, declaresq30 andq31 to be store queues. The argu-

ments toMMSare immediate constants, similar to theMAPQCinstruction. Subsequent to theMMS

instruction,q30 is a store addressqueue, andq31 is a store dataqueue. Data can be stored to

memory using this pair of queue mappings by enqueuing address and data pairs into their respective

queues. Before storing data using these queues, the store address queue must be initialized with a

store capability. This is accomplished by theMOVE @q10,q30instruction; it copies the allocated

capability inq10 into the store address queueq30 . Subsequent writes into the store address queue

should be constant offsets to the initial capability; the memory subsystem is responsible for adding

this offset and checking for bounds violations. Writing another capability into the store address

queue causes the store address queue to be re-initialized with the new capability.
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main:
        MOVECC  1, q2
        SPAWNC  q2, testStub, q0
        MAPQC   q1, q0, q0
        PROCID  q1
        MOVE    q20, q22
        MML     q40, q41
        MOVE    @q22, q40
        MOVECL  0, q40
        PRINTQ  q41
        HALT

testStub:
        MOVE    q0, q100
        MAPQC   q1, q20, @q100
        MOVECC  0, q2
        ALLOCATEC q2, 8, q10
        MMS     q30, q31
        MOVE    @q10, q30
        MOVECL  0, q30
        MOVECL  10, q31
        MOVE    @q10, q1
        MSYNC
        HALT

PC

main:q0 testStub context ID

main:q2 1

main:q1

main:q20 (empty)

testStub:q0 (empty)

testStub:q100 main context ID

testStub:q1

context:queue # queue contents

testStub:q2 0

context:queue # queue contents

(unallocated) (empty)

(unallocated) (empty)

(unallocated) (empty)

(unallocated) (empty)

(unallocated) (empty)

PC

(stalled on empty q20)

simplecode1.eps

"argument" mapping

"return" mapping

Figure 3-3: Thread states after thread spawn and procedure linkage.
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In our code example, a single value, 10, is stored at offset 0. The threadtestStub then

performs anMSYNCto ensure that the store has committed, and sends the memory capability to

the calling thread and halts. The caller,main , then establishes load address and load data queues

using theMML q40,q41 instruction.main then accesses the returned data capability by sending

a copy of the capability into the load address queue,q40 . main then prints the return value from

memory and halts. ThePRINTQinstruction is a convenience instruction only used in the simulator

implementation for debugging purposes. The final state of our machine at the end of our code

example run is illustrated in figure 3-4.

main:
        MOVECC  1, q2
        SPAWNC  q2, testStub, q0
        MAPQC   q1, q0, q0
        PROCID  q1
        MOVE    q20, q22
        MML     q40, q41
        MOVE    @q22, q40
        MOVECL  0, q40
        PRINTQ  q41
        HALT

testStub:
        MOVE    q0, q100
        MAPQC   q1, q20, @q100
        MOVECC  0, q2
        ALLOCATEC q2, 8, q10
        MMS     q30, q31
        MOVE    @q10, q30
        MOVECL  0, q30
        MOVECL  10, q31
        MOVE    @q10, q1
        MSYNC
        HALTPC

main:q0 testStub context ID

main:q2 1

main:q1

main:q20 capability to mem

testStub:q0 (empty)

testStub:q100 main context ID

testStub:q1

context:queue # queue contents

testStub:q2 0

context:queue # queue contents

main:q40

testStub:q10 capability to mem

main:q41

testStub:q30

testStub:q31

PC

simplecode2.eps

10

Memory
System

store address

store data

load address

load data

alloc'd
capability

Figure 3-4: Thread states after memory allocation and access.

3.2 Programming Model

This section fleshes out some of the basic architectural features of ADAM presented in the simple

code example. For a discussion of architectural features and implementation details not directly rel-

evant to migration, please see appendix B. Things discussed in appendix B include the instruction

formats, detailed breakdowns of the capability format bitfields, exception handling, and kernel/OS

interactions. For a comprehensive review of the opcodes provided in ADAM, please refer to ap-

pendix D.
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3.2.1 Threads

The fundamental unit of computation in ADAM is a thread. Threads are very lightweight under

ADAM, and they are opaque, monolithic memory structures. They could almost be called continua-

tions except that they carry an activation frame’s worth of data in addition to a program counter and

an environment pointer. Every thread’s state has a one-to-one mapping with a region of memory,

as seen before in the named state register file [ND91]. The address and bounds of this region of

memory is identified by a capability; this capability is referred to as a thread’scontext ID. Thus, any

thread can be globally uniquely identified by its context ID, because the context ID is just a pointer

into memory. Also, the number of threads per processor is limited only by the amount of memory

available. The correlation of every thread state to a region of memory allows thread and data migra-

tion implementations to share the same basic mechanism. A summary of the state associated with a

single ADAM thread can be seen in figure 3-5.

...
q2

q126

q127

head data
full

tail data
empty

(depth not specified)

80-bit entries

context ID (capability)

map

Individual Queue Details:

Queue
File

status (read-only)

80 bits

kernel capability

exception capability

PC

32 bits

signature hash

64 bits

q1

q0

forwarding capability

created

resident

m
apdrop

m
apped map target + VQN

TAGS

ancestor capability

mode (write-only)

exception temporariesexception temporariesexception temporariesexception temps & args (4)

machine-managed
thread state

user-managed
thread state threadcontextstate.eps

Figure 3-5: Programming model of ADAM

In place of registers in a typical machine, ADAM supplies queues of an unspecified depth. The

output of any queue can be remapped onto the input of another queue in another thread context for

inter-thread communications. This technique is referred to asqueue mapping.
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Arguments and return values are passed between threads via queue mappings; there is no stack

in ADAM. Also, communication to memory is implemented using queue mappings. Hence, all

visibility into and out of a thread occurs via a set of queue mappings. This idea is illustrated in

figure 3-6. The use of queue mappings simplifies an implementation of thread migration first by

isolating all thread state, including communication state, within a single contiguous region of mem-

ory, and second by enabling simple mechanisms for managing the forwarding of communications

concurrently with migration. These migration mechanisms will be described in chapter 4.

constants

rest
of

machine

processor state
backing store

mappings and heap
pointers

capability (also thread ID) front pad & OS info

only path of visibilty
into thread

threadoverview.eps

Figure 3-6: Structure of an ADAM thread

3.2.2 Queues and Queue Mappings

To a first approximation, the queues supplied by ADAM are of infinite depth. However, in a realistic

implementation, the performance of the queues diminishes as more data is shoveled into them.

Hence, while the programming abstraction allows programmers to store large amounts of data in

queues, this should be avoided for performance reasons. If a programmer obeys this restriction,

the queues should perform comparably to a register in a standard RISC machine (see appendix C

for implementation details). Also, when the queues are used as a communication element between

streaming threads, flow control is accomplished by applying back-pressure (i.e. enqueue stalling)

proportional to their fullness. This allows programmers to chain together streaming threads that

compute at different rates without having to deal with flow control explicitly.

Queue mapping is the recommended method for inter-thread communication. Data from any

given source is guaranteed to arrive in-order in the destination context’s queue; however, when
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more than one sender is mapped to a single receiver, there is no guarantee as to the ordering of

the received values between the two senders. A node can request that the source ID of incom-

ing data be enqueued in a secondary queue in lock-step with the primary destination queue, so

that ambiguity created by such a situation can be resolved by user code. While a programmer can

communicate data between threads by passing around heap-allocated data structures, it is not rec-

ommended because ADAM’s memory model uses weak ordering [LW95], and makes no guarantees

on the relative ordering of memory requests between threads. Using heap-allocated data structures

for inter-thread communication can also be less efficient than direct queue mappings in the presence

of thread migration, because heap-allocated communication structures do not automatically migrate

with threads.

ADAM queues can assume register semantics when necessary via a copy/clobber modifier, as

described in the code example at the beginning of this chapter.

3.2.3 Memory Model

The ADAM uses a virtually addressed capability-based memory model. As mentioned previously,

the capability format used in ADAM also encodes base and bound information in the pointer tags.

This technique has been seen before in [CKD94], and is refined by [BGKH00]. Capabilities are

tagged pointers that the hardware recognizes and treats differently from regular data. In particular,

regular users cannot create capabilities on their own; they must request capabilities from the oper-

ating system or some other trusted supervisory mechanism. This feature helps make a system more

secure against malicious or broken code. In the case of ADAM, the capability format is augmented

with tag bits. These tag bits encode information about the capability, such as the read/write permis-

sions and the base/bound information. The base and bound tag information is particularly important

toward enabling the implementation of fast migration mechanisms. Given an ADAM capability, one

can deduce the exact region of data to copy from the base and bound tags; note that the base address

given to a user in a capability is allowed to be different from the absolute beginning address of the

capability. In addition, the tags include an “increment-only” bit. When this bit is set, users can only

reference offsets to the capability base that are positive integers, including zero. This allows the

system to hide information at the top of each capability from users, between the absolute capability

beginning and the user base address. This feature is used in my migration implementation to as-

sociate a remote data locater pointer with each capability. The function of the remote data locater

pointer is described in detail in chapter 4. For more information about the implementation of base
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and bounds encoding in ADAM, readers are referred to appendix B.

Memory is striped across the machine using an explicit node ID as part of the address. The

node ID field and address field can steal bits from each other depending upon the implementation

parameters. This kind of node location coding within the address has been seen before in the Cray

T3E [Sco96]. The actual translation of the virtual addresses and paging mechanisms are transparent

to the specification and implementation-specific. A summary of the capability format can be seen

in figure 3-7.

tags: access rights, base/bounds addressprocessor ID

capability tag

capabilityformatsimple.eps

Figure 3-7: High-level breakdown of the ADAM capability format. Detailed bit-level breakdowns
of each field can be found in appendix B.

3.2.4 Interacting with Memory

As mentioned previously, there are no load or store instructions in the ADAM specification; memory

is an opaque object accessed only through queue mappings. TheMMLandMMSopcodes are used to

define load and store queue pairs, respectively.MMLtakes an outgoing address queue and a return

data queue as arguments;MMStakes an outgoing address queue and an outgoing data queue as

arguments. The ordering of data in any single given load or store queue mapping within a thread

is guaranteed to be preserved, since address and data values are sent to the memory subsystem in

lock-step. However, the ordering between multiple sets of mappings is not guaranteed between

MSYNCinstructions. Hence, accessing a single piece of memory through multiple queue maps is

not recommended as it can result in nondeterministic behavior.

Locks and semaphores in memory can be implemented using theEXCHopcode. TheEXCH

opcode declares a set of three queues as anexchange tuple. One queue is used to specify the

exchange address, another queue is used as the source of outgoing exchange data, and the final

queue is used to specify the return point for the exchanged data. This exchange is guaranteed by

hardware in the memory subsystem to be atomic. The timing of the exchange is not deterministic:

the actual exchange on the memory location happens whenever the exchange request arrives at the

destination memory location.
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When initializing a memory queue mapping, the first piece of data written into anaddressqueue

must be a capability or a memory access exception is thrown. Subsequent accesses to an address

queue may pass more capabilities or any integer data type. When an integer data type is put into a

memory queue, it is assumed to be an offset of the most recent capability passed into the address

queue. Putting a packed integer into an address queue causes data to be returned for each of the

packed sub-values, starting with the least significant value and ending with the most significant

value.

A feature of the memory queue access form is that architects and implementers can extend the

ADAM specification by adding intelligence to the memory system. Capabilities and offsets are

thrown into a memory queue, and the memory system is free to do what it likes before returning

some data. Thus, the memory system can be augmented to be more than just a table of stored values;

it could be configured to perform computations or to automatically traverse data structures as well.
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Chapter 4

Migration Mechanism in a

Decentralized Computing Environment

Memory is like an orgasm. It’s a lot better if you don’t have to fake
it.

—Seymour Cray on virtual memory

4.1 Introduction

The idea of moving code and data around so that they are physically closer to each other is ap-

pealing in any computer system where communication latencies are high. Unfortunately, migration

introduces a large number of new problems. First and foremost, migration consumes computing re-

sources, and system architects must contend with the fact that any movement of data must be even-

tually amortized by the resulting reduction in communication latency. The overhead of a migration

mechanism includes not only the time to copy the data, but also the time required to negotiate with

the migration destination; the potential stalling of access to the data during the migration interval;

the time required to update any pointers into the migrated memory; and any collateral impact on

network and CPU utilization. This litany of performance pitfalls makes it very difficult to wedge an

effective migration mechanism into an existing architecture that was designed without any thought

toward the problem. Thus, even though data and thread migration seem to be good ideas in principle,

their implementation can be a difficult task.

The ADAM architecture and its corresponding implementation drastically reduce the overhead

required for data and thread migration when compared to traditional architectures. ADAM’s data
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and thread migration mechanisms are basically identical because of its programming model and

implementation: threads are just data structures that have a special meaning to the thread sched-

uler. Inter-thread and memory communication is explicitly managed so implementing forwarding

pointers and pointer updates can be done through an efficient and straightforward scheme called

“temporally bidirectional pointers”. Finally, the use of a capability-based memory system with tag-

encoded explicit base and bounds on memory regions simplifies the bookkeeping on which pieces

of memory to move. It now becomes reasonable to discuss a whole new set of issues related to the

on-line scheduling of data and thread migration because of this low-overhead migration mechanism.

4.2 Background

This background section surveys the mechanisms and algorithms of previous work in the area of

data and thread migration. This section is divided into architecture, mechanisms, and algorithms

sections.

4.2.1 Architectures that Directly Address Migration

There are a few architectures that directly address data or thread migration. A class of architectures

known as COMA (Cache Only Memory Architecture) must grapple head-on with the issue of data

migration as a cache line placement problem. NUMA (Non-Uniform Memory Access) machines

also introduce the idea of spatial awareness to an architecture, but the issue of data migration is

typically encapsulated by the cache coherence protocol. Thread migration mechanisms, on the other

hand, typically do not manifest themselves as architectural features, but as run-time or compile-time

supported features of otherwise conventional parallel architectures. Therefore, in the literature,

thread migration mechanisms typically fall under the genre of work-stealing and load-balancing

mechanisms and are treated that way in the next section.

There are relatively few COMAs in the literature. The most notable COMAs are Bristol’s Data

Diffusion Machine (DDM) [MSW93], the Kendall Square Research KSR-1 [ea92], and the UIUC

Illinois Aggressive COMA (I-ACOMA) [TP96]. All three COMAs listed here rely upon a directory-

based cache coherence scheme. The KSR-1 and later revisions of the DDM employ a scalable

hierarchical directory scheme, whereas the published literature on the I-ACOMA does not specify

the details of the directory scheme; in fact, the I-ACOMA literature does not focus much on the data

migration aspects of a COMA, but more on latency hiding schemes through the use of simultaneous
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multithreading and its implementation using embedded memory process technology. As mentioned

previously, COMAs deal directly with the data migration issue as a cache line placement issue.

In the DDM, a cluster of processors share an “attraction memory” (AM) where requested data is

stored; frequently requested data naturally migrates and clusters around the processors that require

the data. The location of data is tracked using a hierarchical directory lookup based on point-

to-point wiring, as opposed to the KSR-1 which uses a series of interlocking rings to resolve the

location of data. While the point-to-point hierarchical lookup addresses some of the scalability

issues of the KSR-1 interlocking rings, it still relies on a directory lookup architecture. This means

that either large cache lines or a high memory overhead must be paid for storing the presence bit

vectors in the cache memories. While there are mechanisms such as sparse directories [GWM90]

or limited pointers [ASHH88] that can reduce this overhead, these mechanisms introduce more

complexity into the system. The ADAM architecture, on the other hand, presents programmers

with a virtual shared memory space and no caches. Coherence in ADAM is trivial, as there is

only one location for any mutable piece of memory; hence no complexity or performance is lost

to a directory cache scheme. The performance loss of not caching memory locally is gained back

through three methods. The first is a simple network protocol and architecture that enables low

latency remote memory requests. The second is aggressive multithreading to hide fetch latencies, in

the style of HEP. [Smi82a] The third is the use of both data and thread migration mechanisms that

supplant the locality of data nominally provided by directory caching schemes.

NUMA architectures make the reality of non uniform memory access an explicit architectural

assumption, and typically provide automatic mechanisms to hide the latency of remote memory ac-

cesses. In the case of the Stanford DASH [CDV+94] and the SGI Origin 2000, a directory-based

cache coherence protocol is employed to help enhance data locality and re-use. The amount of

data that can be “migrated” locally in a ccNUMA architecture is limited by the size of the cache.

Unlike the DDM COMA, the allocation, placement, and coarse migration of data is explicitly man-

aged mostly by software; still, fine-grained data migration is provided by the caching mechanism.

Because of the large overheads incurred by software page migration management, these ccNUMA

machines fall into the class of coarse-grained data migration machines. On these machines, it is im-

practical to consider a migration system where data is dynamically and frequently moved around to

reduce latency and balance loads. For example, the SGI Origin 2000 provides hardware-supported

page migration through two mechanisms: per-page reference counters for profiling, and a direct

memory access (DMA) style block transfer mechanism to accelerate page copying. The time re-
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quired to copy a page of memory is under 30�s; however, the time required to invalidate and update

the TLBs is 100�s or more. [LL97] While a technique called “directory poisoning” is provided that

allows the TLB update to overlap with the page copy process, the performance of page copying is

still less than desired.

4.2.2 Soft Migration Mechanisms

A number of innovative, high performance mechanisms have been proposed for the efficient migra-

tion of threads for load balancing within more conventional architectures.

TAM [CSS+91] (also referred to as Active Threads in [WGQH98]) and its follow-on, Ac-

tive Messages [vCGS92], proposes an efficient mechanism for interprocessor communication us-

ing continuations. It significantly differentiates itself from the J-Machine [NWD93], Monsoon and

*T [PBB93], all message-driven machines, by the fact that Active Messages is a purely software-

approach to achieving high performance. [vCGS92] claims that pure message-driven hardware

implementations are crippled by the limited number of registers available per hardware context,

whereas a software emulated implementation could leverage the rich architecture of a conventional

processor. It also differentiates itself from other message passing systems by operating entirely in

user space, so as to cut out kernel overheads, and by allowing concurrent message transmission

and computation through non-blocking operations. Active Messages demonstrated a performance

of 11 �s (21 instructions) to send a message and 15�s (34 instructions) to receive a message on

an nCUBE/2. On a CM-5, performance is 1.6�s to send a single-packet (address + 16 message

bytes) and 1.7�s for receiver dispatch. Significantly, Active Messages is not a thread migration

mechanism; rather, it is a method for compile-time integration of fast message passing mechanisms,

similar in nature to Remote Procedure Calls (RPCs). Thus, Active Messages does not address how

to deal with spatially nonuniform memory or situations where it is difficult to statically analyze the

optimal pattern of thread creation and messaging.

Computation Migration is a term coined by [HWW93]. Computation migration is similar to

thread migration, but lighter in weight (but not as light weight as TAM threads). This paper goes

into depth about the difference between RPC, data migration and computation migration. A proto-

type system based on PROTEUS (an object oriented language) with explicit programmer annotation

for migration opportunity points was used to evaluate the viability of computation migration. The

implementation was tested on a counting network and a b-tree benchmark. The performance of hard-

ware supported Computation Migration is favorable when compared to hardware shared memory
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and hardware supported RPC. Computation Migration is particularly good under high contention

situations. Perhaps the most interesting contribution of [HWW93] with respect to this work is a

detailed breakdown of where time is spent in the migration protocol. Of the 651 cycles required

to migrate computation, 74% is consumed by “message overhead”,i.e., moving memory around,

scheduling, marshaling data, creating threads, and dealing with procedure linkages; only 3% is

consumed in network transit and the remaining 23% is consumed by what appears to be user code

annotations. User code annotations are required under this scheme as migration is explicitly man-

aged by the user. Note that Active Threads [WGQH98], a slower migration scheme, is used as the

comparison point for my work over Computation Migration because these static annotations restrict

the utility and concurrency benefits of Computation Migration. Even so, my thread migration mech-

anism performs about an order of magnitude faster, cycle-for-cycle, than the Computation Migration

scheme. [Hsi95] describes an extension to the work where dynamic migration is implemented using

a system called MCRL. Migration decisions are based on a pair of simple heuristics based on the

frequency of reads and writes. Benchmarks run on the MIT Alewife system [ABC+95] indicate that

computation migration can be used in combination with data migration in situations where shared

memory writes are common to improve performance. ADAM expands upon this work by creating

a hardware mechanism for lowering the overhead of thread and data migration and thus enabling

efficient fine-grained migration.

Active Threads [WGQH98] is a paper that describes a thread migration mechanism that em-

ploys a user-space threading scheme similar in spirit to Cilk [Joe96], Filaments [LFA96], and Mul-

tipol [WCD+95]. Active Threads stripe processor node addresses across a large virtual memory

space to avoid having to update thread pointers upon thread migration. Without special hardware

support, Active Threads achieves a 17�s one-way latency for a 5 word message. A bulk transfer

of 1 kbyte takes 560�s, constrained by the host I/O bandwidth. A thread with a null stack can

be migrated in 150�s; on a Sparc v8 architecture processor using gcc 2.7.1, a null thread stack

is 112 bytes. A 2 kbyte stack takes 1.1 ms to migrate. These tests were run on a cluster of 50

MHz Sparcstation 10s with Myrinet. The paper compares this thread migration mechanism against

schemes such as Ariadne, Millipede, and PM2; these other schemes have a performance on the order

of 10 ms for basic migration operations. Finally,super-linearspeedup is demonstrated for locality-

guided migration on a simple multithreadedgrep application searching across a distributed disk

array. Average thread lifetimes in this benchmark are on the order of 5-10 ms. The ADAM architec-

ture adopts Active Thread’s use of a node-striped address space but also enhances performance by
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providing a hardware mechanism to accelerate migration and by providing temporal bi-directional

pointers to perform lazy pointer updates.

DEMOS/MP [PM83] is an operating system that implements an efficient thread migration mech-

anism. The thread migration mechanism described in DEMOS/MP is very similar to that used in

ADAM, but implemented entirely in software. DEMOS/MP processes consist of program state,

link tables, message queues and “other state” (presumably heap state). Inter-process communica-

tion occurs through OS allocated and administered links that are recorded in the link tables. This

use of explicitly managed inter-process communication links enables DEMOS/MP’s efficient pro-

cess migration mechanism. When a process wishes to migrate, it is halted, space is allocated on

the remote node, and the process is moved. Messages accumulated during migration are forwarded

on to the new process location, and there is a mechanism for updating sender link tables to re-

flect the new process location. There is little mention of performance and a dearth of comparison

benchmarks in [PM83], but the paper does mention that a null thread–one with no program or data

information–has a size of 850 bytes total. The paper also mentions that in non-trivial processes,

the size of the data and program information regions are much larger than the size of a null thread.

Thus, one might safely assume that the overhead of migration is fairly high in DEMOS/MP, as its

processes are roughly equivalent in structure to those found on modern UNIX systems. The ADAM

architecture improves on the DEMOS/MP migration mechanism by using a lightweight thread rep-

resentation that is faster to move, and by providing an architecture that enables hardware support for

interprocess communication mechanisms. Thread migration under ADAM also does not require the

movement of the heap state or traversing OS-based memory allocation tables. ADAM’s architecture

and migration mechanism also enables data migration in addition to thread migration.

4.2.3 Programming Environments and On-Line Migration Algorithms

A hardware mechanism’s design is incomplete without thought for the programming environment

or algorithms required to harness the power of the mechanism.

Emerald [JLHB88] is the seminal work in object migration systems. The only other works cited

by this work are the distributed Smalltalk implementation, Argus, and Eden; one might also count

Hydra and Clouds (object-based operating systems) as previous work. Emerald is a system design,

and embodies a language and an implementation. The language has a type system that allows the

programmer to give hints to the compiler. It also provides for migration, allocation, and affinity hints

in the language. Emerald is also garbage collected. The language uses a global unique name space.
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Objects may have processes attached to them, or they may be direct data; the decision to attach

a process to an object is made by the compiler. Emerald has a strong focus on maintaining good

local-invocation performance despite providing the ability to migrate objects. Forwarding pointers

with timestamps are used as the method for migrating objects quickly without having to drag the

universe along with a moving object. The decision of what parts of an object to move is made by the

runtime and compiler; small pieces of data get moved at migration time; larger pieces require more

thought. Emerald also provides a global object lookup facility. One problem with Emerald is the

handling of processor registers: an incoherency can result in processor register state due to the way

activation records are moved. In the paper, Emerald was demonstrated to have good performance

over a non-migrating implementation of a distributed mail-handling application. Finally, the paper

provides a good summary of the benefits of migration: load sharing, communications performance,

availability, reconfiguration, and the easy utilization of special capabilities.

Ciupke, Kottman, and Walter [CKW96] proposes a framework for enabling programmer-guided

object migration in their paper titled “Object Migration in Non-Monolithic Distributed Applica-

tions”. The paper posits that an object-oriented model is a natural match for a migratory framework,

since objects naturally define a locality of data and the methods that can modify it. The paper sug-

gests that the basic linguistic primitives required to guide migration are fixing operations, movement

operations, and attachment notations. The paper also assumes that all high-level migration decisions

are coded by “reasonable users”. The language primitives are tested within an abstracted simulation

environment that makes assumptions such as a fully-connected network. The simulations indicate

that dumb migration (basic user-coded migration) yield roughly the same performance increase as

profile-based migration. The results also indicates that migration can be detrimental in situations

where migration policies are coded with only one component in mind. In particular, performance is

degraded in the hot-spot case, and in the case that the work set of objects are tightly associated but

migrated as individual entities.

“Profiling Based Task Migration” by Baxter and Patel [BP92] focuses on migration for load-

balancing only, and has a very specific, limited data set. However, it demonstrates that for this

particular example, a migration algorithm acting on local knowledge only can achieve within 5%

the performance of a global knowledge solution.

Kalogeraki, Melliar-Smith, and Moser [KMSM01] discusses dynamic algorithms for distributed

object migration in their paper titled “Dynamic Migration Algorithms for Distributed Object Sys-

tems”. This work considers systems with only 8 nodes and about 5 objects per node. Object state
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transferrance is hindered by the movement of OS/kernel state under the ORB [Inc01] distributed ob-

ject architecture; object scheduling happens in milliseconds, profiling over seconds, and migration

over tens of seconds. The test system is 167 MHz ULTRA Sparc using VisiBroker ORB 3.3, and the

interconnect is 100 MBit/s ethernet. The focus of the paper is the use of migration to satisfy real-

time system constraints, so the results demonstrate that “laxity” can be preserved through migration.

Thus, the relevant section of this paper to this thesis are its dynamic migration algorithms. The pa-

per presents “cooling” (load balancing) and “hot spot” (latency reduction) algorithms, evaluated

independently. The algorithms correspond to the intuition brought by their names, and the paper

demonstrates that these algorithms can be used to successfully balance a task within a distributed

system.

The Object Request Broker (ORB) [Inc01] system used by [KMSM01] is described in a 1000+

page document. ORB is an open architecture and specification for defining objects that can be

shared, interoperated, and invoked under one huge common umbrella. As noted previously, the

overhead incurred by the ORB system places it in a different league of migration systems when

compared to this thesis; however, the standard itself addresses a number of interesting programming

issues that are beyond the scope of this thesis.

In the context of real time distributed object systems, [HS94b] uses Bayesian analysis and queu-

ing theory to determine if a task should be migrated to a destination node given a set of real-time

constraints and some estimates about the task’s execution time and laxity. The article references a

prior work [HS94a] which describes how to estimate the load state of a remote node given outdated

information. This article focuses primarily on ensuring that decisions to transfer work to another

node are done in such a manner that future task arrivals are also considered. This prevents the

situation of everyone sending their tasks to the one unloaded node in the network just because the

outdated load information looked good at the time of migration initiation. This article also intro-

duced the idea of “buddies” that are physically co-located for restricting the range of broadcast state

information and attempts to reduce the amount of communication required to maintain other-node

state.

This article is a good example of a formal analysis of data migration in a complex system using

statistical analysis. Other methods for analyzing the system could be through control systems theory

(feedback systems) or through on-line competitive analysis. A significant difference of this article

from the work I am concerned with is that this work investigates real-time systems, whereas my

work is simply interested in optimal performance (minimum execution time as opposed to guaran-
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teed time of execution).

Hall, et al. [HHK+01] presents a theoretical paper on data migration in the context of load bal-

ancing and optimizing a storage system. A fully connected, bidirectional network is assumed, with

objects all of the same size. Even with these assumptions, the problem of determining an optimal

plan for data migration is declared to be NP-complete. The problem is also NP-complete for just

two nodes directly connected with objects of variable size, given that only one object can move at

any time and that space is very limited on each node. The paper claim that this problem is equivalent

to edge-coloring for the unconstrained space problem, and very similar in solutions bounds to the

edge coloring problem for constrained space problems. The good news is that heuristics and poly-

time algorithms are available that can solve the problem to near-optimality. [BEY98] is a survey

work on competitive analysis and on-line algorithms that describes some of the algorithms that can

be applied to data migration and load balancing problems. I base much of the formal analysis in my

thesis on the contents of [BEY98].

4.3 Migration Mechanism Implementation

The Q-Machine is an implementation of the ADAM abstract architecture. The Q-Machine leverages

ADAM’s architectural features to enable fast, low-overhead migration mechanisms. This mecha-

nism reduces the latency and bandwidth cost of migrating lightweight data and threads to that of an

L2 cache fill on a Pentium 4 processor in a RAMBUS based system. The estimated system latency

of an L2 cache fill is about 175 ns (which is 140 800 MHz Direct-RAMBUS cycles) [CJDM01], and

the size of an L2 cache line is 128 bytes [HSU+01]. Note that the Pentium 4 processor’s L2 cache

is sectored into 64-byte halves, but according to [HSU+01], L2 cache fills “typically” fetch data for

both sectors. More information on the performance of the migration mechanism can be found in

section 6.

The ancillary details of the Q-Machine implementation are presented in chapter 5; for now, I will

focus solely on the implementation details relevant to data and thread migration. Also, when reading

this section, it is assumed that the reader is familiar with the ADAM architecture specification

(chapter 3 and appendix B).

The heart of the migration mechanism is the tagged capability architecture of the ADAM, and

the use of queue maps for inter-process communication. These two hardware enforced disciplines

drastically reduce the amount of bookkeeping and special-purpose hardware required to implement
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an efficient migration mechanism. Capabilities encode their base and bound information within

their tags, so the boundaries of migrated data are explicit. In addition, capabilities in this archi-

tecture feature an “increment-only” bit that allow portions of the beginning of the capability to be

safely reserved for overhead functions such as forwarding pointers and statistics bookkeeping. Also,

thread state has a one-to-one mapping with a capability (the thread’s context ID) in memory due to

the named-state queue file implementation (see appendix C for queue file implementation details).

This feature allows thread migration to share almost all of the mechanisms of data migration; the

primary difference is that thread migration requires additional locking and synchronization with the

physical queue file. The use of queue maps for inter-process communication is important because

it enables simple mechanisms for synchronizing, redirecting and updating inter-thread communica-

tions requests during and after a thread migration event.

4.3.1 Remote Memory Access Mechanism

I will now introduce the remote memory access mechanism used in the Q-Machine implementation.

The remote memory access mechanism is an important component of the migration mechanism.

Recall that the address space of ADAM is structured so that the processor node ID is the highest

address bits; also, by convention, processor nodes occupy the even route addresses, and memory

nodes occupy the odd route addresses. This allows processors and memory to be paired off into

“preferred” pairs by the existence of a reliable, in-order delivery cut-through network path between

preferred pairs. A local memory access is thus defined as a memory access where the node ID of the

access capability is equal to the node ID of the preferred memory node. Local memory accesses are

always serviced by the preferred memory node, and local memory allocation requests allocate data

in the preferred memory node. The performance of accessing data in the preferred memory node

is similar to that of an L3 cache access time on a contemporary processor; please see section 6 for

specific numbers.

Semantically, a preferred memory node is the target of allMML, MMSandEXCHqueue mappings,

regardless of the access capability used to initialize the mapping. Thus, all remote requests are also

routed from a processor node to the preferred memory node. When a remote request is initialized,

the local virtual memory handler allocates local “shadow” pages for the remote capability. Shadow

pages serve two functions: first, they provide a method for storing the remote memory’s data locater

pointer; second, they provide the infrastructure for caching immutable data. Shadow pages should

never displace local memory pages when local memory is scarce. Hence, most of the shadow pages
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are not swapped into core or initialized when they are first allocated. The only exception is the first

page. The first memory location of the first shadow page is the data locater pointer. This data locater

pointer is initialized with the remote access capability. Note that the rest of the first shadow page’s

space is marked as all invalid and all non-primary. Figure 4-1 illustrates the format of a remote

capability in shadow space.

data locater pointer

remote
capability
user base

remote
capability

user
segment

first VM page is marked
as "invalid" and "non-primary"

nonresident,
unitialized pages

datamigformat.eps

remote capability
system base

Figure 4-1: Format of a remote memory capability’s shadow space in local virtual memory space.

Figure 4-2 overviews the system level view of resolving a remote memory request. Remote

requests are easily detected when a memory-mapped queue is initialized with its access capability:

if the node ID of the access capability is not equal to the memory node’s ID, it must be a remote

request. This remote request status is noted in the memory node’s access table tags (for more

information on the memory node access table, please see section 5.3.2).

All requests from a processor node to a preferred memory node use the format of a transport

packet without the physical layer route header and checksums. More information on the transport

protocol used in the Q-Machine can be found in appendix C.2. These transport packets contain all

the state required to resolve the return address of the requester; thus, when forwarding a memory

request, the memory node simply encapsulates the processor’s original request packet in forwarding

headers and sends the encapsulated packet on to the remote memory node. Please see figure 4-3 for

a more detailed illustration of how local and remote exchange (EXCH) mappings are handled. The

EXCHoperation was chosen for illustrative purposes because it combines both a load and a store

operation. A load operation uses exactly the load-half of theEXCHprotocol, and a store operation

uses the store-half of theEXCHprotocol, plus a store-acknowledge packet so that writes can be

guaranteed to complete in program order.

Note that for compatibility with the migration mechanism to be outlined in the next section,
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Figure 4-2: System level view of resolving remote memory requests.
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Figure 4-3: Details of handling remote and localEXCHrequests.
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all memory accesses, even stores, must check the valid and primary tag bits. If the existing value

is invalid and the non-primary bit is set (as is the case when data has been migrated out), then

the access table must be updated to forward future requests, and the current request must also be

forwarded to the remote request queue. The overhead of tag checks on all requests, including stores,

can be mitigated if dedicated hardware is provided in the memory implementation.

4.3.2 Migration Mechanism

The remote memory access primitives described in the previous section enable the streamlined im-

plementation of migration mechanisms. The migration mechanism recognizes only two commands,

migrate data (MD(Clocal; IDdest) and migrate thread (MT (Clocal; IDdest)). The arguments to these

commands are the source capability of the data or thread to migrate, and the destination processor

ID. Other commands that could be implemented include partial migration commands and copy im-

mutable data commands.

4.3.3 Data Migration

The data migration mechanism implemented in the Q-Machine relies on the following assumptions

and invariants.

Invariant: The user only sees one global unique name for each capability, and this name never

changes.This is enforced by the basic data locater pointer at the top of every capability. This data

locater allows the actual data to move freely without having to concurrently modify thread state.

Assumption: There is at most one outgoing migration process per memory node at any given

time. This assumption simplifies the hardware requirements for freezing and synchronizing access

requests to a piece of data in flight.

Invariant: The relative order of requests to any given capability is preserved before, during,

and after migration.This is important in maintaining consistency in the memory model.

Assumption: The relative order of requests between the migrating and the non-migrating ca-

pabilities is not important.This is a general assumption of the architecture, but it is restated here for

clarity. It is the requestor’s responsibility to ensure, for example, that stores to one location complete

before loads to the same location. In the Q-Machine implementation, only one pending request is al-

lowed per thread per unique memory location; a higher-performance solution may use store buffers

with associative lookup to alleviate this bottleneck, so long as it does not cause problems with the

next assumption.
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Assumption: There is only one pending memory request per thread per unique memory location

in the network at any given time.This rather restrictive assumption is required because requests to a

migrating capability are delayed for the duration of a migration event; in fact, in the case that data is

migrating across a routing bottleneck, requests issued after migration will arrive before any pending

requests issued before migration. It is possible to relax this assumption with extra bookkeeping in

the migration mechanism and pointer update protocol, but this kind of performance optimization

complexity is eschewed in my research prototype. Note that local requests have less restrictive

requirements because the cut-through interface has stronger request ordering guarantees than the

external network interface.

Invariant: There is at most one primary copy of a capability within the system at any time.The

primary copy of a capability is the copy that is allowed to respond to load requests for mutable data

or any store or exchange request. A capability is primary when the primary tag bits are set on all

the data within the capability’s segment.

Invariant: When there are zero primary copies of a capability within the system, no requests to

the capability are serviced.In other words, data in flight cannot be modified or read.

Assumption: A capability to be migrated starts out local.A memory node cannot manage the

migration of capabilities that are not local; if this must happen, the local memory node should send

a message to the remote memory node to request a migration.

Performance Tip: It is helpful to have a hardware mechanism for clearing or setting the pri-

mary bits on large blocks of memory.This is a frequent operation performed by the migration

mechanism that scales poorly with the size of the capability segment. One implementation ap-

proach could be to interleave the primary-bit clearing operation with the readout of the data during

the copy phase of migration.

This is the procedure for migrating a capability.

� A migration request is issued of the formatMD(Clocal; IDdest)

� A request to allocate a capabilityCremote of suitable size is issued to the receiving memory

node.

� Requests toClocal are serviced untilCremote is returned to the source node.

� All incoming network requests toClocal are frozen using the mechanism diagrammed in figure 4-

4. Note that outgoing data may continue to be sent and resent by the idempotent sequenced

transport protocol outlined in section C.2.
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� Clocal is copied toCremote

� The contents ofClocal are marked as invalid and non-primary, except for immutable data.

� The data locater entry ofClocal is changed from invalid toCremote.

� Outgoing data in-flight prior to the freezing ofClocal must all be acknowledged in accordance

with the sequenced idempotent network protocol before continuing to the next step.

� Requests toClocal are unfrozen and re-scheduled. These requests are now handled by the exist-

ing remote memory access infrastructure.

� Eventually, after all pointers toClocal have been updated, the garbage collection mechanism

de-allocatesClocal.

Memory Request Arbiter

Memory

local remote network

from cut-through from network interface

== == ==

to cut-through
to network
interface

frozen capability

request
queue

frozen
queue

memfreezemech.eps

Figure 4-4: Mechanism for temporarily freezing memory requests.

In addition to the migration mechanism, a mechanism is required to updateincomingdata lo-

cater pointers, or else every memory request will eventually have to traverse a chain of data locater

pointers. One method for performing pointer updates is to sweep through memory and resolve all

data locater pointers to their primary locations. This method is prohibitively expensive and slow. A

better solution is to employ bi-directional data locater pointers, and to send update messages along

the reverse paths every time a piece of data is migrated. However, bi-directional pointers have the

drawback of needing to maintain an arbitrarily large list of reverse pointers. The reverse pointer

update also jams the outgoing network ports of the memory node if the reverse pointer list is large.

In order to counter these faults, I use a mechanism I call temporally bi-directional pointers.

Temporally bi-directional pointers can be thought of as lazily evaluated bi-directional pointers.

Whenever a request is issued to a migrated capability, the response is a pointer update message.
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This pointer update message contains the body of the original request so that the requester does not

need to keep track of outstanding request state. Please refer to figure 4-5. While the temporally

bi-directional pointers mechanism wastes one trip across the network per update when compared

to eagerly updated bi-directional pointers, temporally bidirectional pointers have many advantages:

they require constant space to implement; reverse pointers that are inactive consume no resources;

update requests are spread out over time so the effective latency is lower due to less queuing of

requests; and, if a data block was migrated across a bottleneck, the bottleneck is not aggravated by

a deluge of update messages.

4.3.4 Thread Migration

The thread migration mechanism implemented in the Q-Machine relies on the following assump-

tions and invariants.

Invariant: The user only sees one global unique name for each thread, and this name never

changes.This is enforced by the data locater pointer at the top of every capability, including thread

capabilities. This data locater allows the actual data to move freely without having to concurrently

modify thread state.

Invariant: All inter-thread operations are write-only.This comes for free with ADAM’s “push”

model of inter-thread communications. In other words, only outgoing queue maps are allowed; a

local queue cannot request “read” data out of a remote queue.

Assumption: There is at most one outgoing migration process per processor node at any given

time.This assumption simplifies the hardware requirements for freezing and synchronizing requests

to a thread in flight.

Invariant: The relative order of requests to any given thread is preserved before, during, and

after migration.This is important for maintaining consistent data ordering in mapped queues.

Assumption: The relative order of requests between migrating and non-migrating threads is

not important.This is a general assumption of the architecture, but it is restated here for clarity.

Invariant: There is at most one primary copy of a thread within the system at any time.The

primary copy of a thread is the copy that is schedulable and is a valid target for incoming data from

mapped queues. A thread is primary when the primary bit is set on the context ID. Recall that the

context ID is also the capability for the backing store of the thread.

Invariant: When there are zero active copies of a thread within the system, no requests to the

thread are serviced.In other words, a thread in flight cannot be modified or read.
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Figure 4-5: Handling of a migrated EXCH request with temporally bi-directional pointers.
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Assumption: The thread to be migrated starts out local.A processor node cannot manage the

migration of threads that are not local; if this must happen, the local processor node should send a

migrate request message to the remote processor node.

Performance Tip: The hardware should keep track of queues that have been created, in ad-

dition to exactly which queues have memory maps, source maps, and drop maps applied to them.

With this information, queues that have not been created (i.e., never referenced or otherwise empty)

can consume zero overhead during migration. The named state queue file implementation of the

Q-Machine provides all of this bookkeeping information for free.

The Q-Machine implements two procedures for migrating threads. One is used when the thread

is determined to be “lightweight”,i.e., it has few memory mappings, few created queues, and little

other state associated with it. The other is used when a thread is determined to have a large amount

of state and may cause loading problems on the network and the receiver; this is referred to as a

“heavyweight” thread. The primary difference between the protocols is the timing of the remote

thread allocation versus the arrival of the thread state. A heavyweight thread migration issues an al-

locate request before sending the thread data; this allows migration preparations to occur in parallel

with the servicing of the allocation request. A lightweight thread migration piggy-backs the thread

state along with the remote thread allocation request; this optimization reduces the time required for

a lightweight thread to migrate.

The following is the procedure for migrating a lightweight thread; the responsibility for handling

this migration is split between the sender and the receiver.

Sender’s Procedure for a Lightweight Thread Migration:

� A migration request is issued in the formatMT (Clocal; IDdest)

� ThreadClocal is removed from the local pool of threads. This includes the processor node work

queue and any internal state maintained by the thread scheduler.

� All incoming requests toClocal are frozen using a mechanism similar to that in figure 4-4.

� All of Clocal’s state is flushed from the physical queue file into environment memory.

� All pending memory requests forClocal must complete or at least be acknowledged before exe-

cuting the next step.

� All pending outgoing requests ofClocal in the transport layer must be acknowledged before

continuing on to the next step.

� Clocal’s thread state is migrated to nodeIDdest.
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� Clocal is set to non-primary.

� Once a “migration successful” message has been received fromIDdest, the pending requests

to Clocal can be unfrozen and re-scheduled. The pointer update mechanism, discussed later,

handles these requests.

� Eventually, after all pointers toClocal have been updated, the garbage collection mechanism

de-allocatesClocal.

Receiver’s Procedure for a Lightweight Thread Migration:

� An incoming migration packet is received containingClocal’s thread state.

� Cdest is allocated, andClocal’s thread state is copied intoCdest.

� Clocal’s memory mapped queues are reconstructed forCdest to the receiver’s preferred memory

node.

� Cdest is immediately placed into the receiver’s runnable thread pool.

� A “migration successful” token is sent to the sender.

The following is the procedure for migrating a heavyweight thread. Again, the burden of the proto-

col is shared between the sender and the receiver.

Sender’s Procedure for a Heavyweight Thread Migration:

� A migration request is issued in the formatMT (Clocal; IDdest)

� A request to allocate a capabilityCremote of suitable size is issued to the receiving processor

node (nodeIDdest).

� ThreadClocal is removed from the local pool of threads. This includes the processor node work

queue and any internal state maintained by the thread scheduler.

� All incoming requests toClocal are frozen using a mechanism similar to that in figure 4-4.

� All of Clocal’s state is flushed from the physical queue file into environment memory.

� All pending memory requests forClocal must complete or at least be acknowledged before exe-

cuting the next step.

� All pending outgoing requests forClocal in the transport layer must be acknowledged before

continuing on to the next step.

� Cremote must be received before continuing on to the next step.

� Clocal’s thread state is migrated nodeIDdest.

� Clocal is set to non-primary.
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� Once a “migration successful” token has been received from nodeIDdest, the pending requests

to Clocal can be unfrozen and re-scheduled. The pointer update mechanism, discussed later,

handles these requests.

� Eventually, after all pointers toClocal have been updated, the garbage collection mechanism

de-allocatesClocal.

Receiver’s Procedure for a Lightweight Thread Migration:

� An incoming allocate thread request is received; space is allocated andCremote is returned to

the sender.

� Clocal’s thread state is received and copied intoCremote.

� Clocal’s memory mapped queues are reconstructed forCdest to the receiver’s preferred memory

node.

� Cdest is placed into the runnable thread pool.

� A “migration successful” token is sent to the sender.

Queue mapping pointer updates are handled in a slightly different manner than the data locater

pointer updates for data migrations, because multiple requests are allowed to be outstanding to a

single queue during thread migration. A “transmission line” protocol is used in this case. The name

was chosen to reflect the similarity of this situation to the propagation and reflection of waves in

a series-terminated transmission line. Please see figure 4-6. This protocol relies on one additional

assumption.

Assumption: All messages between a sending and receiving thread are guaranteed to be deliv-

ered and processed in-order with respect to the message sequence generated by the sending thread.

This assumption is enforced by the idempotent sequenced transport protocol used in the Q-Machine

implementation.

This is the transmission line protocol:

� A thread is frozen due to a migration in progress

� Incoming requests to the frozen thread are blocked, and a “forwarding pointer update” packet

containing the blocked incoming requests is returned to the sender as soon as the thread has

been migrated.

� Once the sender receives the “forwarding pointer update” packet, it issues a “forwarding ac-

knowledge” message and ceases to issue any further requests to the migrated thread; meanwhile,

the sender re-issues any returned requests to the new thread location
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� Once the old location receives the “forwarding acknowledge” packet, it sends an “okay to un-

block” packet to the sender.

� Once the sender receives the “okay to unblock” packet, the sender may issue new requests to

the migrated thread.

4.4 Migration Mechanism Issues and Observations

A detailed review of the performance of the migration mechanism can be found in section 6. This

section reflects on some of my general observations about the migration mechanism and its design

and implementation challenges.

4.4.1 General Observations

The basic protocol for migration in a capability-based architecture with native support for forward-

ing pointers is simple: lock the capability, move the data, then unlock the capability. Of course,

the devil is in the details. It is the difficult details that lead to the dichotomy of memory and thread

capabilities. In other words, while it has been pointed out that perhaps a single mechanism could

be used for both threads and data, it seems that the nature of how memory and threads are used by

programmers leads to a natural segregation of these structures in the machine architecture.

One basic trade-off enabled by treating data and threads separately is a simplification of the

memory migration protocol. Since memory has no auxiliary state – no queue file, no scheduler

entries, only one pending request per thread per location – movement of memory is much lower

overhead than movement of a thread. On the other hand, because threads use strictly unidirectional

communication, pointer updates can be managed across multiple outstanding operations. Multiple

concurrent memory operations are more complicated because order has to be maintained between

all possible store, load and exchange queues that may be dynamically mapped to a single memory

location. Thus, by dividing the machine into distinct memory and processor nodes, the respec-

tive migration protocols can cull out any unnecessary assumptions or conditions specific to each

situation.

In addition, a thread-only programming model may be advantageous in situations where per-

formance hinges on having available multiple concurrent requests to memory. In a thread-only

programming model, the programmer sees no memory nodes or memory mapped queues; instead,

dedicated server threads handle memory requests in an abstract fashion. The ADAM can be spe-
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Figure 4-6: Transmission line protocol for handling forwarding pointer updates on thread-mapped
communications.
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cialized into a thread-only programming model using compiler tricks with some OS support. The

compiler takes care of inserting the code necessary to spawn abstract dedicated memory servers, and

the OS is responsible for coordinating the migration of the server threads along with their associated

data.

4.4.2 Performance Issues

I designed the migration mechanism to be a high performance solution with latencies and band-

width requirements comparable to L2 cache fills in a contemporary conventional processor. Results

presented in section 6 show that I achieve this goal for lightweight threads and data. Of course,

there are still optimizations that could be applied to the migration mechanism.

For example, partial migration of thread state could accelerate the time between a migration

decision and the first arrival of a thread at its destination. My scheme locks down a thread and

moves its entire contents before re-scheduling the thread. A more sophisticated scheme would keep

track of the most recently and most commonly used set of data in the thread, and just send that data

over in a small packet for immediate scheduling; as the receiving node initializes and schedules

this thread for execution, the environment memory could be concurrently filled with the remaining

thread data. Partial migration is feasible only because of the flexibility in the named-state queue file

implementation used by the Q-Machine.

A partial migration scheme can also be applied to large data sets. If an extremely large capability

is allocated, the capability could be sectored off into sub-blocks by representing the actual capability

as a set of smaller capabilities within the large capability. The smaller sub-blocks would contain

pointers to the parent capability, and vice versa; the pointer implementation would be similar to that

of the data locater pointer scheme used by my remote memory access mechanism. These sub-blocks

would be freely migrated around the system independently of the parent capability.

Another method for partial migration is demand-based copying of data. In this scheme, a set of

reverse pointers are also required in addition to the data locater pointers. The “primary” capability

is still responsible for handling all operations on the capability, but data for a load or exchange is

propagated to the primary capability only when requested. This scheme is illustrated in figure 4-7.

This method could be useful if very sparse, large data structures are frequently migrated throughout

the machine.

69



node A

capability A

data 0
data 1
data 2
data 3
data 4*

capability B

1
1
1
1
X

node A node B

0

1

capability A

data 0
data 1
data 2
data 3
data 4*

( )
1
1
1
1
X

1

0

capability B

( )
( )
( )
( )
( )

( )
0
0
0
0
0

1

0
0

0
0

capability A

data 0
( )

data 2
data 3
data 4*

capability B

1
0
1
1
X

node A node B

0

1

capability B

( )
data 1

( )
( )

data 4*

( )
0
1
0
0
X

1

00
0

capability A

( )
( )

data 2
( )

data 4*

capability B

0
0
1
0
X

node A node B

0

1

capability B

( )
data 1

( )
data 3
data 4*

( )
0
1
0
1
X

0

00
capability C0

node C

capability C

data 0
( )
( )
( )

data 4*

( )
1
0
0
0
X

1

0
0

allocate B

m
igrate data

1 &
 4

m
igrate data0,

allocate C
, m

igrate
data0,4, partial
m

igrate data3

0 "primary" bit in capability

0 "primary" bit in data

data 0 mutable data

data 4* immutable data

( ) invalid data/capability

( )
( )

( )

( )
( )

( )
( )

migrationOverview.eps

Figure 4-7: Overview of a demand-driven data propagation scheme.
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Chapter 5

Implementation of the ADAM:

Hardware and Simulation

From Gordon Moore’s “Cramming More Components onto Integrated Circuits”, April 1965

This section outlines the details of an implementation for a physical machine, called the Q-Machine,

optimized to run ADAM code. A top-down approach is taken in describing the implementation.

All key architectural features are validated by a brief feasibility study in order to keep the design

rooted in reality and to attempt to convince the reader that this is an implementable architecture.

This section also outlines how the proposed hardware parameters are reflected in the design and

implementation of a software simulator of the Q-Machine. The software simulation is bandwidth

and latency-accurate, and almost cycle accurate. The first goal of the simulation is to demonstrate

the feasibility of the queue-based programming model used by the ADAM and to demonstrate

integration with the Couatl and People languages and toolchains. The second goal of the simulation

is to demonstrate the performance of thread and data migration mechanisms described in section 4,

and to provide a platform for testing various migration algorithms.
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5.1 Introduction

The Q-Machine is organized as a fine-grained MIMD parallel processor tile array featuring embed-

ded memories. A preponderance of proposed tile processor or chip-multiprocessor (CMP) architec-

tures, many with embedded RAM of some form, have cropped up recently due to their attractive

simplicity and seductive “guaranteed not to exceed” performance promises. Some of these recently

proposed architectures include RAW [LBF+98], Hydra [HHS+00], IRAM [KPP+97], Sun Mi-

crosystem’s MAJC, the IBM Power4, Active Pages [OCS98], Decoupled Access DRAM [VG98],

Terasys [GHI94], SPACERAM [Mar00], Smart Memories [MPJ+00], and Hamal [Gro01]. A suc-

cinct article by Kunle Olukotun summarizes the essential advantages of CMPs. [ONH+96]

5.2 High-Level Organization

The address space of the Q-Machine is divided into three parts: code, environment, and data. The

code space is write-once, read many and data is striped across all nodes; interaction between code

space and user space is possible only through theLDCODEopcode. Environment and data spaces are

read-many, write-many and their address spaces are local to each node. Environment space is where

thread contexts are stored; thus, all interaction with environment space is implicit. Environments

are “allocated” by theSPAWNset of opcodes, and threads are “garbage collected” as theyHALTor

are observed to no longer reference or be referenced by anything else in the system. Data space is

accessed only through queue mappings in the execution unit. A memory management coprocessor

is required to handle memory requests in memory space. AnALLOCATEopcode is provided in the

instruction set as a facility to create memory, and a garbage collection mechanism is required to

reclaim memory. The interaction of theALLOCATEopcode with the memory management copro-

cessor is implementation-dependent. Figure 5-1 illustrates the high level situation that leads to this

division of address spaces. Note the implementation specific options such as I/O devices and custom

hardware blocks in figure 5-1. These devices can be accessed either through queue mappings set up

by OS traps, or through opcodes added to the stock ADAM specifications that behave similarly to

theALLOCATEandSPAWNinstructions.
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Figure 5-1: Pieces of a Q-Machine implementation. Node ID tags are uniform across the machine,
so network-attached custom hardware is addressable like any processor or memory node.

5.3 Leaf Node

The basic leaf node contains two fundamental nodes: a processor node and a memory node. Each

of these nodes appear identical to the primary network in terms of routing and addressing. How-

ever, a low latency cut-through path is provided between each processor-memory node pair. This

path establishes the bonded memory node as the preferred location of data on which the processor

node wishes to operate. The cut-through path is guaranteed to always deliver data reliably between

the leaf node pair; thus, the latency associated with adding packet headers, block checksums and

other bookkeeping incurred by a reliable-delivery transport protocol can be avoided. There must be

sufficient bandwidth and ports available to make the probability of either the processor or memory

node becoming saturated by cut-through traffic negligible. A simple way to guarantee this assump-

tion is to partition the design so that there is a dedicated port for cut-through traffic, separate from

ports for dealing with inter-node traffic. Partitioning in this manner runs the risk of dedicating ex-

cess resources to an underutilized cut-through port; however the job of the migration manager and

scheduler is to try and structure the distribution of data and computation so that as much locality

is exploited as possible. A block diagram of the unit leaf node implementation can be found at
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Figure 5-2: High level block diagram of a leaf node.

5.3.1 Processor Node

The processor node consists of five major sub-components: an execution unit, a scheduler, a network

interface, an environment cache, and an instruction cache. An overview of the processor node

organization can be found in figure 5-3.

The scheduler and the execution unit interact via a work-window path and a retired thread path.

The work-window is a small buffer of scheduled threads to run. Each scheduled thread is bundled

with an instruction cache line that is pre-fetched as the thread waits in the work-window. The

ADAM System Simulator implements a work-window that is eight threads deep. The execution unit

maintains a pointer that rotates through the work-window whenever a thread blocks. The execution

unit also maintains a run-length count of each item in the work window and forces an item to swap

out when the maximum run length is reached, so as to prevent the starvation of other threads. The

maximum run count is programmable at run-time.

When a thread blocks, it may be removed from the work window and sent back to the scheduler

with a tag indicating on which piece of data the thread blocked. The method for determining when
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Figure 5-3: Detail of a processor node.

Processor Core

The processor core itself looks similar to a classic RISC architecture. Operands are fetched

from a physical queue file (PQF) and sent directly to an arithmetic unit (EXEC); results are written

back, for the most part, into the PQF. The PQF is implemented in a manner similar to a named-state

register file (NSRF) [ND95]. Thus, the PQF can be thought of as a cache for thread state. The

PQF is fully associative: any line in the PQF can be mapped to any queue in any thread context. A

contiguous region of the data memory space is dedicated to “environment memory” so that lines in

the PQF have a simple one-to-one mapping with addresses in memory. This environment memory

is guaranteed to be node-local via a contract with the migration manager (see Section 4 for more

details). One distinguishing feature of the PQF is that it has an auto-spill feature, such that when the

PQF exceeds a certain threshold of fullness, lines are retiredonly when there is available bandwidth

to the environment cache. The ADAM System Simulator implements a PQF with 128 lines and an

auto-spill threshold of 124 lines. Please see Appendix C for more notes on the implementation of

the PQF.

Inter-thread communication occurs via the “push” model only. A push model means that a

thread can only generate inter-thread traffic that targets another node; it cannot “pull” data from
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another node by placing an inter-thread mapping on a read port. By forcing thread communication

to happen only on data writes, the queue mapping lookup can occur in parallel with the result

computation. Thus, critical path overhead is kept to a minimum for inter-thread communication.

Data that is destined for a thread context located on the local processor node is immediately looped

back into the local scheduler which performs some bookkeeping and then quickly forwards the data

directly into the PQF.

An important observation is that when the working set of contexts have a footprint that fits

within the PQF, and there is little inter-thread communication, the execution core datapath looks

almost exactly like that of a standard RISC processor. This simplicity of the critical path enables

the implementer to more easily achieve high clock rates in the execution core and in turn yield high

performance on single-threaded code. Also note that the execution core can be easily extended to

a super-scalar out-of-order issue implementation: the queue structure of the register file gives some

amount of register renaming for free, and the empty bits on the PQF simplify the implementation of

out-of-order dispatch.

Scheduler

The use of fine-grained multithreading to hide latency has been seen before in the Tera/MTA

[AKK +95], HEP [Smi82a], M-Machine [FKD+95] and *T [PBB93], among others. The scheduling

algorithm implemented in the simulator for this work is a derivative of that used in [NWD93], and

takes after the general scheduling algorithm described in the introduction to this section. Threads

are divided into two pools, a runnable pool and a stalled pool. The runnable pool is executed in

a round-robin fashion with a thread pre-emption timeout to guarantee some fairness. Threads that

block on a data availability stall are retired to the stalled pool; threads that block on a structural stall

(such as a named-state queue file miss) are rotated to the bottom of the runnable pool. A thread is

promoted from the stalled pool to the runnable pool when the thread’s data arrives via the network

interface. All incoming data must go through the network interface because the only mechanism for

data to be delivered to a thread is via queue mappings, and all queue mappings are routed through

the network interface.

A dedicated scheduler and profiling co-processor is provided in the Q-Machine to remove the

overhead of figuring out which threads to run and when to migrate objects from the execution

core. The scheduler works only on locally available information and runs out of a small bank

of local memory, so its implementation is much lighter-weight than the execution core. In other
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words, the scheduler does not require the queue-based inter-thread communication mechanisms

implemented in the execution core, so it can use a simpler register file and direct load/store memory

access mechanisms. Thus, the scheduler is implemented as a slightly enhanced 16- or 32-bit RISC

processor that runs entirely out of a few megabits of local memory. In an implementation taped

out in 2010 – more on this in section 5.4 – a memory of 5 Megabits is presumed to be very easily

implemented in fast SRAM technology; if DRAM technology is used, the capacity could be 10 or

20 times that amount. A programmable scheduler co-processor is chosen over dedicated hardware

because the scheduling and migration problem is very complex and difficult to implement directly

in hardware. Also, an ambitious user or a compiler may wish to tune the scheduler code if very

regular or predictable thread running patterns are expected.

The scheduler co-processor’s primary hardware enhancement is a direct interface to the empty-

full bits of threads pending scheduling; incoming data from inter-thread traffic must go through

the scheduler before being written into the PQF (or to the environment cache if the PQF is full),

so that the scheduler knows which threads have become un-blocked as a result of the arrival of

pending data. The other hardware enhancement of the scheduler is a fast direct interface to the

scheduler list. The scheduler list is intimately tied the instruction cache. Each scheduler list entry

contains an I-cache line, a finger into the line that reflects the exact program counter value, a context

ID, and a pointer field that, if valid, contains a pointer to the next scheduler list entry. Scheduler

list entries that are unused can be treated as generic I-cache lines and vice-versa. An example of

the hybrid scheduler/I-cache structure is illustrated in figure 5-4. In order to keep I-cache speeds

high, a smaller cache-buffer may be employed that is dedicated only to I-caching, or perhaps the

implementor can separate the tag and context ID fields for both functions and use a less associative

but faster comparison for lines that are marked as tagged. The scheduler only performs index-based

lookups for scheduler items, so it does not require an associative comparator, but rather requires a

longer tag field, since multiple threads will often run through the same piece of code. Note that the

I-cache and scheduler functions can be made mutually exclusive while sharing the same physical

space without too much of an impact on the critical I-cache indexing and lookup path: the cache

comparison lines can have the “match” output of the comparator gated by the “sched” mode bit;

thus lines devoted to scheduler functionality look just like invalid lines to the caching function.

It is anticipated that the instruction cache will have a capacity of several thousand lines, so in

order for the node to enter scheduler-lock, there must be around several thousand threads to run. If

the capacity of the scheduler structure is deemed to be too small to fit in hardware, an extra bit can
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Figure 5-4: Hybrid scheduler list/I-cache structure. In this diagram, c42 and c10 are runnable and
up for forwarding to the work-queue; as values for c55:q12 and c4:q4 arrive via the NI, they will be
promoted to runnable status.

be provided in the “next runnable” field that causes the scheduler co-processor to take a trap when

requesting the next runnable line and to instead check an explicitly managed main memory-based

linked list.

The hybrid scheduler/list structure prefers to have at least two write and two read ports, one

each for the scheduler function and for the I-cache function; however, an implementation can get

away with single read/write ports if short stalls are tolerable. Although at first glance scheduler

traffic may seem to be very small compared to that of cache line traffic, the scheduler co-processor

is also responsible for modifying the order of the linked list of runnable items depending on the

item’s priority and status. It is also responsible for inserting and deleting scheduled items as threads

are spawned, garbage-collected, or migrated in and out of the node.

Network Interface

A discussion of the network interface used in the Q-Machine is deferred to appendix C.

5.3.2 Memory Node

The memory node is implemented as a network interface to a large bank of DRAM plus a small co-

processor that helps coordinate concurrent and atomic operations. It also can help manage a local

data only cache to improve access times and to increase the average number of requests responded

per network cycle. The network interface used by the memory node is identical to that used by the
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processor node.

The method of accessing memory in the ADAM model is to first send an initial access capability

to a memory node, and subsequently send only offsets to that capability. If another capability is seen

coming in from an already initialized context ID/queue pair, it is interpreted as a re-initialization of

the access capability for that pair. Note that context ID/queue pairs are unique throughout the entire

machine by design. As threads are garbage collected or memory mappings explicitly destroyed,

access capabilities are removed from the access table.
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Figure 5-5: High level block diagram of a memory node.

The access table is implemented exactly like a cache; see figure 5-5. The index and tag into

the access table is determined by hashing the requesting context ID and queue number pair. The
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requester identification information is embedded into every network packet (including packets that

come over the cut-through interface). The implementor is free to optimize the cache size and asso-

ciativity, along with the hash function, to optimize the hit rate. In the case of a cache collision, the

replaced data cannot be thrown away, as in a cache; instead, the data has to be retired to storage that

the memory co-processor manages.

The memory co-processor is also responsible for managing atomic transactions. When a thread

executes anEXCHinstruction, a packet is sent to the memory node that marks the access capability

as atomic. The next time the thread attempts to access a queue that maps to theEXCHqueue, the

thread (actually, the processor node that the thread is running on) negotiates a lock on the capability

and performs the atomic exchange. It is one of the memory co-processor’s duties to coordinate this

locking feature.

The address space allocated to each memory node is much larger than the implemented memory

at the memory node; thus, it is assumed that every memory node has access to a slower but very

large backing storage, be it a disk drive, or conventional DRAM backed by a disk drive. Paging is

done in a conventional manner, and the memory co-processor is responsible for managing paging

as well.

The ADAM System Simulator implements a memory node as an array with uniform lumped

average access latency.

5.4 Physical Design

I describe here what a physical implementation of the Q-Machine might look like. This exercise is

an important step in grounding the simulator parameters in some semblance of reality; readers are

invited to skip this section if they have little interest in physical design.

5.4.1 Technology Assumptions

Before delving into the details of the Q-Machine physical implementation, I will summarize my key

technology assumptions. I assume that the final implementation of the Q-Machine will be a medium

to large machine consisting of an array of tile processor chips. The number of nodes represented

by the entire array is expected to be in the range of 1,000 for a desktop machine to 1,000,000 for a

room-sized supercomputer. I also assume the availability of wall outlet power and perhaps a liquid

cooling scheme employing microchannels [Tuc84] to give a maximum thermal budget of at least
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Parameter Value

Lithography 50 nm
Gate Length �30 nm
Layers of metal 10 minimum
Short wire pitch 100 nm [CI00b]
Short wire maximum run 300�m [CI00b]
Chip size (production) 400 mm2

Chip size (maximum) 572 mm2

Logic density, auto-layout ASIC 400-800 Mtransistors/cm2

SRAM density, high-performance 1423 Mtransistors/cm2 or 237 Mbits/cm2

Maximum SRAM cache size @0.3ns access time�4 KB [AHKB00]
Maximum SRAM cache size @0.5ns access time�100 KB [AHKB00]
Maximum SRAM cache size @1.0ns access time�1000 KB [AHKB00]
Anticipated memory to logic ratio 9:1 [CI00c]
DRAM cell size, optimized 0.0064�m2, or 15.6 Gbits/cm2

Clock rate, ASIC (cross-chip) 1.5 GHz
Clock rate, local 10 GHz
Clock rate, 16FO4 delays per clock 3.5 GHz [AHKB00]
Reachable chip area in 1ns (16FO4 delays) about 10% [AHKB00]
Signal I/O pads available 2700
Chip-board signaling rate 3.1 GHz
ASIC defects Do, D/m2 (65% yield) 787
Cost, at introduction, using high-performance
(large on-chip memory) CPU model

3.8�cents/transistor

Number of silicon layers At least 2
Interconnect pitch between layers Equivalent to top-level metal

Table 5.1: Extrapolated Technology Parameters for 2010. All values from [CI00a] unless otherwise
noted.

1000 watts per chip (actual consumption is assumed to be much less than this). I also presume that

the implementation will tape out around 2010, give or take a couple of years. One of the more

significant aspects of ADAM is that it can leverage the upcoming higher level of integration while

coping with the wire delays, complexity and yield issues commonly anticipated to be problems

with 2010-level process technology, while maintaining a backward compatible path with ADAM

implementations built today. Table 5.1 summarizes the technology that might be available in 2010.

Note that the [AHKB00] data is based on the Semiconductor Industry Association (SIA) 1999

roadmap which presumes a chip area of about 800 mm2 at the 50 nm node, whereas all of the

other data is pulled from the updated SIA 2000 roadmap. The availability of a 3-D CMOS process

is not addressed by the SIA roadmap, but a number of companies and research labs have shown
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promising results, such as Matrix Semiconductor and MIT Lincoln Labs. Matrix Semiconductor

has demonstrated multilevel silicon devices that were fabricated on a TSMC process. Their basic

approach is to deposit thin films of amorphous silicon on planarized dielectric layers, and then to

anneal the silicon into crystals large enough to form transistors. Their approach does not neces-

sarily yield high-performance logic, but it does provide hopes for a high-density memory. [Sem]

MIT Lincoln Labs’ approach, on the other hand, can yield at least two layers of high-performance

logic. Their approach bonds two SOI CMOS wafers or chips together face-to-face using hydrophilic

room temperature bonding. To create more layers of logic, one or both of the bonded wafers can

be thinned using an etch and/or Chemical Mechanical Polishing (CMP) process, relying on the

SiO2 layer as an etch-stop. Another layer of logic can be hydrophilically bonded and the process

repeated. [LBCF+00]

hydrophilic
bonding

masking, back-etch/
thinning & balling

compute & memory
known good silicon die

active interconnect
&

switching known
good silicon die

microchannel
cooling

high-density
C4 bumps

flipdieprocessing.eps

Figure 5-6: Packaging and integration for a two-layer silicon high-performance chip multiprocessor.

This admittedly fuzzy look into the cloudy crystal-ball of the future forms the basis for some

of the constants associated with the Q-Machine implementation. It is important to reiterate that the

ADAM does not rely on any of this technology coming to pass; one could implement ADAM in

today’s technology.

5.4.2 Design Description

The Q-Machine physical design uses a high-performance two-layer silicon process, as illustrated

in figure 5-6. One layer is dedicated to the processor nodes, and the other layer is dedicated to the

active switching network. Each layer can be independently tested before integration via built-in-

self-test(BIST) and wafer probing to help boost system yields.

There are several advantages to this partitioning of the design into network and processor lay-

ers. By giving an entire layer to the active switching network, the interconnect can use fatter, wider-

spaced differential wires and buffer placement is less constrained. In addition, the interconnect layer
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contains all of the routers and switches. Finally, the interconnect layer is entirely generic: the user is

free to re-use the interconnect layer across several designs and incorporate custom nodes on the pro-

cessor layer. An architecture that leverages this kind of reconfigurability is described by [CCH+00].

The obvious advantage for the processor layer is that it is free of the overhead of network wiring

and buffering, and thus it has fewer constraints on the size, layout and placement of the nodes. A

schematic of what the network layer may look like is presented in figure 5-7. A discussion of the

topology of the network chosen for this implementation can be found in section C.3.
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Figure 5-7: Cartoon of the network layer layout.

The processor layer for this implementation is chosen to be a simple tile format. Each unit tile

consists of a memory node and a processor node (an architectural block diagram of the processor

node can be found at figure 5-2 with a description in section 5.3). The memory node and the

processor node are laid out as tori around the network interface (NI). This toroidal arrangement
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around the network interface helps minimize the worst-case distance of any of the slower wires

used on the processor layer to the faster interconnect on the network layer. An overview of what the

fully-tiled node might look like can be found in figure 5-9.
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Figure 5-8: Hypothetical layout of a single processor node.

The anticipated clock rate of a single processor node is 1 GHz. This number is derived by look-

ing at the radius of communication over a 1000 ps interval and the estimated clock period for logic

built using a design rule of 64 FO4 inverter levels at the 35 nm process node. [AHKB00] The rela-

tively relaxed 64 FO4 inverter levels criteria was chosen in order to allow the processor design to be

accomplished with fewer pipeline stages and a primarily synthesized verilog design methodology

with a few well-chosen hand-optimized blocks (such as the multipliers, adders and barrel shifters).

Simply stated, the assumptions about the physical implementation of this architecture my thesis are

kept very conservative, to help compensate for their extremely speculative nature. Also, the actual

performance of the migration mechanism in my thesis is always quoted in terms of network cycles,

and compared against other implementations by normalizing cited times to clock cycles. Normal-

izing to clock cycles helps to factor out technology assumptions. Finally, since the performance of

the migration mechanism in this architecture is dominated by the performance of the network, the

actual clock rate of the processor could be much higher and have little impact on the results of this

thesis. The detailed assumptions about the network interface are given in appendix C. The short

summary is that the network interface should be able to send, in the worst case, one flit every 500 ps

to 1 ns.
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Figure 5-9: Hypothetical layout of the tile processor chip.
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Chapter 6

Machine and Migration

Characterization

42.7% of all statistics are made up on the spot.

—The Hon. W. Richard Walton, Sr.

The last section described a fast, low-overhead mechanism for moving data and threads around

within the Q-Machine implementation of ADAM. This section summarizes the basic performance

characteristics of the Q-Machine and present the results and analysis of several benchmarks.

6.1 Basic Q-Machine Performance Results

This section presents some basic performance characteristics of the Q-Machine and its network as

implemented by Adam System Simulator. All instructions are assumed to complete at a rate of one

per cycle, as long as its dependencies are satisfied. An instruction that has been scheduled, but is

missing a dependency, causes a single-cycle bubble to be inserted into the execution stream. Future

implementations could design the PQF to interact with the scheduler in such a manner that this

bubble is eliminated, however this generation simulator was written to maximally simplify proces-

sor node implementation. As mentioned previously, future implementations could also enhance the

processor node’s performance by adding out of order, superscalar issue, or SMT to the core. The

latter two features are eschewed because they would would require more queue file ports; the for-

mer would require an associative lookup within the pending out of order issue window in a thread

whenever a piece of data arrived from the network interface.
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The Adam System Simulator (ASS) used to derive all the results for my thesis implements the

full idempotent source-responsible network protocol described in section C.2, and simulates the net-

work in a cycle-accurate fashion. The network topology is a radix-4 dilation-2 randomly wired fat

tree with1

2
bandwidth scaling per tree level; all wiring is unidirectional point-to-point. Each proces-

sor or memory node has four ports into the network: two in, and two out. The simulated processor

nodes also take into account the swapping mechanisms required for the named-state queue file (as

described in appendix C). The simulator also takes into account stalls due to memory bandwidth

limitations. The latency of the network interface in all modes of routing (cut-through, loopback,

and off-node routing) is also accounted for by the simulator. The simulator was written in Java

and achieves a peak simulation rate of around 20 kcycles/s aggregate on a dual Athlon XP 1900+

system. A screenshot of ASS can be seen in figure 6-1.

Figure 6-1: Screenshot of the ASS running a 64-node vector reverse regression test. On the left is
the machine overview; to the right is the thread debugger window.

6.1.1 Memory Performance

These results summarize the essential processor node to preferred memory node access times. All

of the following results are for an unloaded machine running only the test code.
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� Allocation Latency: 10 cycles from execution of theALLOCATEinstruction to issue of its

dependent instruction. The allocation algorithm in the simulator is simple; it just increments

an allocation pointer and returns a capability of the desired size.

� Load from local memory: 7 cycles from the execution of theMOVEinstruction that sends

the load address to the issue of an instruction dependent upon the load result. The breakdown

of the load timing is 1 cycle from processor core! NI; 1 cycle from NI cut-through port!

preferred memory node; 2 cycles to perform memory access; 1 cycle memory! memory

node NI; 1 cycle from memory node NI! processor; 1 cycle to re-schedule and re-issue the

dependent instruction.

� Store to local memory: 6 cycles from the execution of theMOVEinstruction that satisfies

the atomic address and data tuple to the issue of the dependent instruction. The latency

breakdown of a store is similar to that of a load, except that only 1 cycle is spent in memory

because the store acknowledge return can be overlapped with the store.

These numbers are conservative for the target process technology; one cycle is budgeted each

way for wire delays due to the anticipated spacing of the memory from the processor.

6.1.2 Basic Network Operations Performance

The general formula for the latency of a thread-to-thread communication packet (Ln) is:

Ln = 2 � Tproc + 2 � Troute � n+ (Lpacket � 1) (6.1)

where

Tproc is the processor node network interface overhead of 2 cycles

Troute is the time required to traverse a router, which is 3 cycles

n is the route depth, equal to the number of levels up the tree a packet must travel

Lpacket is the length of the data packet, which is 4 for a short data packet

The following tests were run on an unloaded 16-processor simulation; these tests confirm the valid-

ity of equation 6.1.

� Loopback latency: Loopback latency is the time required for a thread to communicate with

another thread on the same processor node. This time is 4 cycles from producer’s execution
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to the issue of the consuming instruction under minimum scheduler loading. The breakdown

of the 4 cycles is: 1 cycle from the processor core! NI; 1 cycle to identify and process

the loopback; 1 cycle from the NI! PQF write port; 1 cycle to re-schedule and re-issue the

dependent instruction. Latencies under real workloads will typically include some amount of

time spent servicing other threads in the work queue.

� Thread to thread time: The latency of sending one piece of data to a node that is one up-

route away is 14 cycles, not counting issue and execution times of the producer and consumer

threads. Hence, there is a roughly 14 cycle one-way latency to the nearest neighbor. The

latency breakdown is as follows (obtained through measurements):

� 2 cycles after producer execution to push packet to NI

� 7 cycles through the network (first contact to network to first contact at destination la-

tency) = 3 cycles/router + 1 wire cycle between routers

� 2 cycles for the tail of the packet to “catch up”

� 3 cycles to collate and issue the consumer instruction

� Remote Load Access Latency, Full Diameter on a 16-node Machine:55 cycles round-trip

latency

6.2 Migration Performance and Migration Control: Simple Cases

This section presents the results of applying the migration mechanisms to two simple cases: two

threads communicating exclusively with each other, and a thread and memory communicating ex-

clusively with each other. A brief formal analysis is also performed to determine the optimal omni-

scient and optimal on-line algorithms for controlling migration in these cases.

6.2.1 Two Threads Benchmark

This benchmark is used to determine the thread migration overhead. A tight loop of dependent

operations between two threads is constructed; the difference in the time per message loop during

thread migration and during normal operation is the migration overhead. Specifically, two threads

communicate exclusively with each other. Each thread is initialized with a unique token; the tokens

are swapped between the threads and incremented over 32 iterations. On the fifth iteration, a manual

MIGRATEinstruction is issued which forces one thread to migrate toward its partner. The use
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of a manually invoked migration allows greater control over the benchmarking process. There is

no reduction of processor overhead by manually controlling migration since this task is typically

handled by the scheduling and profiling coprocessor. A diagram of the communication pattern can

be found in figure 6-2, and the code for this synthetic benchmark can be found in figure 6-3.

Thread 1
(T1)

Thread 2
(T2)

print incoming
send to T2
loop

print incoming
send to T1
loop

simplethread.eps

Figure 6-2: The two threads synthetic benchmark. Communication happens along the arcs; a data
dependency is forced by printing the incoming data.

Two-Thread Benchmark Results

The two threads benchmark with migration was run over five cases that varied the starting posi-

tion of the threads. These trials were compared to the two threads benchmark run without migration

over the same five starting positions. The benchmark yielded the following results:

� The measured time overhead of a lightweight migration over a distance of two up-routes is

66 cycles. Time overheads are computed as the time added to a single iteration result when

compared to the non-migrated case.

� The measured time overhead of a heavyweight migration over a distance of two up-routes is

78 cycles; a heavyweight migration was forced by tweaking the internal simulator heavy/light

decision threshold.

� Benchmark speedup scales linearly with migration distance (figure 6-4). Speedups are bigger

in a real system implementation because the simulation environment assumes that wire delays

between tree levels are constant, regardless of the size of the tree. In other words, a real imple-

mentation will have more wire delay, especially in a large implementation, and the impact of

migration will be greater.

� The zero-distance case in figure 6-4 shows lower than unity performance because there is a

slight 14-cycle overhead for executing a migrate command manually, even if it does not move

the thread.

The estimated system latency of an L2 cache fill on a Pentium 4 is about 175 ns (which is 140

800 MHz Direct-RAMBUS cycles) [CJDM01]. Thread migration times in my architecture thus
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main:
MOVECC 0, q100 ; spawn one thread local
MOVECC 4, q101 ; spawn one thread distance 4 away
SPAWNC q100, thread1, q0
SPAWNC q101, thread2, q1
MAPQC q10, q0, @q0
MAPQC q11, q0, @q1
MOVE @q0, q11 ; thread 1, meet thread 2
MOVE @q1, q10 ; thread 2, meet thread 1
HALT ; my work is done

thread1:
MOVECL 0, q10
MAPQC q20, q1, @q0

loop1:
MOVE @q10, q20
PRINTQX q1
SEQC @q10, 0x20, q30
SEQC @q10, 0x5, q40 ; this segment is used to control when
ADDC q10, 1, q10 ; migration occurs during testing
BRZ q40, byp1
PROCID q41
MOVECL 2, q42
MIGRATE q41, @q0

byp1:
BRZ q30, loop1
CYCLES ; CYCLES prints out the current cycle count
HALT ; available only in the simulation environment

thread2:
MOVECL 0x100, q10
MAPQC q20, q1, @q0

loop2:
MOVE @q10, q20
PRINTQX q1
SEQC @q10, 0x120, q30
ADDC q10, 1, q10
BRZ q30, loop2
CYCLES
HALT

Figure 6-3: Code used for the two thread benchmark.
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compare favorably to an L2 cache fill on a conventional contemporary processor.
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Figure 6-4: Measured speedup versus migration distance for the Two Threads benchmark.

Analysis

I will now derive an on-line algorithm for guiding migration decisions in the two-thread sce-

nario, and also determine how many loop iterations must happen in order to amortize the cost of

a migration. Formally speaking, the threads communicate using a message sequence,�. For any

given�, I will derive a migration algorithm,ALGTT, and evaluate its competitiveness with respect

to the optimal algorithm,OPTTT.

In the case of the Two Threads microbenchmark, a sequence consists ofi messages,m, that

each contribute a partial cost as a function of the routing distanced:

�
i
d = m1(d);m2(d); : : : mi(d) (6.2)

Let us denote the cost of an algorithm – the time it takes to execute given� – asALG(�). If the

cost of moving a thread isM(d), then our algorithms are defined ford > d0:

� OPTTT: If [OPTTT(�d0) + M(d � d0)]�OPTTT(�d) < 0, then migrate thread 1 fromd to d0

before the first iteration.

� ALGTT: If at iterationi,
Pi

k=1[mk(d)] =
Pi

k=1[mk(d
0)] +M(d � d0), migrate thread 1 from
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d to d0.

The competitiveness ofALGTT andOPTTTis now derived.

Theorem. ALGTTis at worst 2-competitive withOPTTT.

PROOF.

By inspection,OPTTT(�id) = ALGTT(�id) for OPTTT(�id0) +M(d � d0) � OPTTT(�id). Let us

define the value ofi whereOPTTTceases to be equal toALGTT as the equivalence pointe. In cases

wherei > e, ALGTT’s competitive ratio againstOPTTTis

Pe
k=1[mk(d)] +M(d� d0) +

Pi
k=e+1[mk(d

0)]
Pi

k=1[mk(d0)] +M(d� d0)
(6.3)

Clearly, the worst case would be ife = i, becauseALGTT would pay forM(d � d0) and never

amortize its cost. At this point, the competitive ratio is just

k +M(d� d0)

k
(6.4)

wherek =
Pe

k=1[mk(d
0)] +M(d� d0) �

Pe
k=1[mk(d)].

Thus, aslim[mi(d
0)]! 0, ALGTT! 2�� OPTTT. �

Theorem. ALGTTis an optimal on-line algorithm for the Two Thread microbenchmark.

PROOF.

There are two cases to consider forALGTT when comparing against another algorithm,ALG:

MIGRATE EARLIER. In the case thatALG were to migrate earlier thanALGTT, the worst case perfor-

mance forALG would be a sequence that ended right atALG’s decision threshold. The competitive

ratio in this case would be

Pi
k=1[mk(d)] +M(d� d0)
Pi

k=1[mk(d)]
(6.5)

One can see that this function is monotonically increasing for decreasing values of
Pi

k=1[mk(d)]

(figure 6-5); hence, it is not possible forALG to have a lower competitive ratio thanALGTT.

MIGRATE LATER. In the case thatALG were to migrate later thanALGTT, the worst case perfor-

mance forALG would again be a sequence that ended right atALG’s decision threshold. In this

case, the competitive ratio would be
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k +
Pi

k=e+1[mk(d)] +M(d� d0)

k +
Pi

k=e+1[mk(d0)] +M(d� d0)
(6.6)

wherek =
Pe

k=1[mk(d)], ande is the equivalence point as previously defined. As the decision

point ofALG increases beyonde, the numerator of equation 6.3 grows slower than the numerator of

equation 6.6 sincemk(d) > mk(d
0). Because the denominators are the same, there is no way that

ALG can be less thanALGTT. �

I will now determine the curve for the equivalence point,e, versus various migration overheads.

The point,e, represents where the cost of migrating a thread is amortized by the savings in thread

communication time. In order to determine this, I will derive an expression for the message delivery

time,mi(d). The general formula for routing delay in the Q-Machine implementation is

mi(d) = LR � d (6.7)

whereLR is the latency contribution of routers for one tree level andd is the routing distance,i.e.,

the number of tree levels spanned by the route. In the Q-Machine,LR = 6.

Recall that the equivalence point,e, is defined as

e �

eX

i=1

mi(d
0) +M(d� d

0) =

eX

i=1

mi(d) (6.8)

Rewriting yields
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e �

eX

i=1

mi(d)�

eX

i=1

mi(d
0) = M(d� d

0) (6.9)

Substituting in 6.7,

e =
M(d� d0)

LR � (d� d0)
(6.10)

Given equation 6.10, we can create a set of curves indicating how many iterations are required to

amortize the cost of a migration for various migration costs (figure 6-6). The cost of migrating

a thread,M(d), is assumed to be constant ford in each of these curves, which is a reasonable

assumption because a heavyweight thread migration mechanism is assumed for these graphs. Upon

inspection of the curves, it is apparent that the cost of a migration is quickly amortized, even for

networks of modest size withconstantwire delay between tree levels. Migration looks even more

attractive in a realistic scenario where wire delays grow at best as the square root or cube root of the

number of nodes in the machine.
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Figure 6-6: Length of message sequence required to amortize various migration overheads (M(d)).
The baseline two messages per iteration for the Two Thread benchmark is also marked on the graph.

6.2.2 Thread and Memory Benchmark

The thread and memory benchmark is used to determine the data migration overhead, in a manner

similar to the two threads benchmark. In the thread and memory benchmark, a single thread com-

municates exclusively with a single 16-word or 128-word piece of memory through an exchange
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mapping. A single location in memory is incremented 32 times by the remote thread using the

exchange mechanism; on the fifth iteration, the data is forced to migrate toward the thread. This

scenario is similar to the Two Threads case, except that an extra level of indirection is introduced for

non-local memory due to the data locater pointer mechanism. The code for this synthetic benchmark

can be found in figure 6-8, and a diagram of the communication pattern can be found in figure 6-7.

Thread
(T)

Memory
(M)

send address
send data
print exchanged

simplemem.eps

address

data

exchanged

Figure 6-7: The thread and memory synthetic benchmark. Communication happens along the arcs;
a data dependency is forced by printing the incoming data.

Thread and Memory Benchmark Results

The Thread-Memory benchmark with migration was run over five cases that varied the starting

position of the memory. These trials were compared to the thread-memory benchmark run without

migration over the same five starting positions. The benchmark results are summarized in figure 6-9

and figure 6-10.

Figure 6-10 shows the amount of time per iteration versus iteration count, for migration forced

on the fifth cycle for the 16-word and 128-word cases. Key data points are labeled with the migration

status at that iteration. The amount of migration overhead that is actually experienced by the system

is dependent upon the relative timing of the migration request and the incoming memory requests.

In the 16-word case, the timing is such that there is virtually no overhead due to memory request

freezing and contention during the migration process; since this is the only step that leads to a

slowdown relative to the non-migratory case, the migration of small memory objects is almost free.

However, migration overhead scales linearly with the size of the data that is being moved, and

eventually the process of freezing and moving the capability adds a non-negligible overhead, as can

be seen in the case of moving a 128-word capability.

The overheads and message request characteristics for the Thread-Memory case are similar to

the Two Thread case; memory migration can be thought of as thread migration, but faster. Hence,

the algorithms and analysis from the previous section apply here.
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main:
MOVECC 2, q100 ; spawn one thread distance 2 away
MOVECC 0, q101 ; allocate memory
SPAWNC q100, thread1, q0
ALLOCATEC q101, 16, q1
MAPQC q10, q0, @q0
MOVE @q1, q10 ; thread, meet your memory
PROCID q5
MOVE q5, q10 ; thread, meet me
MIGRATE @q1, q20
; CONSUME q20 ; substitute for migrate to disable mig.
PRINTS "migrating"
HALT ; my work is done

thread1:
EXCH q20, q21, q22 ; declare exchange queues
MOVECL 0, q10
MOVE q0, q1 ; store our capability in q1
MOVE @q1, q20 ; initialize the exchange tuple
MAPQC q6, q20, q0 ; map back to our caller...

loop1:
MOVECL 0, q20 ; always use address 0 for this test
MOVE @q10, q21
PRINTQX q22
SEQC @q10, 0x20, q30
SEQC @q10, 0x5, q40 ; this segment is used to control when
ADDC q10, 1, q10 ; migration occurs during testing
BRZ q40, byp1
PROCID q5
MOVE q5, q6 ; send a packet to our caller...

byp1:
BRZ q30, loop1
CYCLES ; CYCLES prints out the current cycle count
HALT ; available only in the simulation environment

Figure 6-8: Code used for the thread-memory benchmark.
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Figure 6-10: Cycles per iteration for Thread-Memory benchmark.d = 4 in both cases.
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6.3 Application Cases

I will now demonstrate the Q-Machine running some application kernels coded in the People lan-

guage. These applications are in-place Quicksort, streaming Matrix Multiply, and a simple N-Body

gravity simulator. The in-place Quicksort application is used to demonstrate the load balancing abil-

ities of the implementation. The streaming Matrix multiply is used to demonstrate latency-driven

data migration, and the N-Body gravity simulation is used to demonstrate latency-driven thread mi-

gration. In order to demonstrate my architecture on these kernels, some simple load-balancing and

migration algorithms were implemented. For each application, I will briefly provide some back-

ground on the load balancing or migration techniques employed, and then present the results of the

application benchmark with and without the benefit of dynamic migration control.

6.3.1 In-Place Quicksort Application

A simple in-place Quicksort was written in the People language for this benchmark. Ben Vandiver,

the creator of People, wrote the benchmark code. The Quicksort implementation looks very sim-

ilar to a typical recursive implementation written in C or Java. Figure 6-11 gives a flavor for the

Quicksort kernel. Note that in a language like C or Java, this recursive implementation would have

little parallelism, as each recursive call toqsort() is called in sequence; however, in People, each

recursive call actually spawns a new thread. This thread-spawning calling convention introduces

latent parallelism in the code that can be uncovered by a load-balancing mechanism.

The load-balancing scheme implemented for this benchmark uses two mechanisms: work-

stealing and thread-pushing. Work stealing has been seen before in systems such as Cilk [BL94]

and [RSAU91]; thread-pushing is the dynamic work scheduling problem. An overview of dynamic

work scheduling algorithms and techniques can be found in [SHK95] and in [XL97].

The metric used to determine a processor’s load for load balancing purposes is the time,Tw,

that the currently running thread spent waiting in the runnable pool.Tw is a direct measure of

wasted time because the scheduler only promotes threads to the runnable pool that have its data

dependencies resolved. IfTm is the expected time required to migrate a thread, work stealing is

beneficial ifTw > Tm.

In order to implement work stealing, I had to determineTm and I had to implement a load dis-

covery mechanism.Tm was determined to be200 by profiling; the detailed results of the migration

profiling can be seen in figure 6-12. A noteworthy observation is that migration times take on a bi-
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int qsort(array[int] arr, int low, int high) {
if (high == low) {

return high-low;
} else {

int pivot, index, temp;
int i,j;
boolean notdone;

// choose pivot
index = low + rand(high-low);
pivot = arr[index];
arr[index] = arr[low];
arr[low] = pivot;

// partition
i = low - 1;
j = high + 1;
notdone = true;

while (notdone) {
while (notdone) {

j = j - 1;
notdone = arr[j] > pivot;

}
notdone = true;
while (notdone) {

i = i + 1;
notdone = arr[i] < pivot;

}
if (i < j) {

temp = arr[i]; arr[i] = arr[j]; arr[j] = temp;
notdone = true;

} else {
notdone = false;
index = j;

}
}

membar();

// recurse
i = qsort(arr,low,index);
j = qsort(arr,index+1,high);
return i + j;

}
}

Figure 6-11: Object method for the Quicksort benchmark written in People.
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modal distribution in the presence of a heavily loaded network. This bimodal distribution is a result

of packet collisions in the network. In other words,Tm = 200 is the expected time given that the

migration data packet succeeds on the first try. In the case that a migration packet does not succeed

on its first try, one could cut the overhead losses and immediately abandon migrating that thread.

This would require adjustments to the migration protocol to prevent two copies of the thread from

running, though, in the case that the acknowledgment of the migration packet failed to be delivered.

This fail-fast migration scheme was not implemented for these simulations, but left as an exercise

for future work.

Mean 192
Median 170
Mode 125
Standard Deviation 72
Minimum 58
Maximum 497
Count 177
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Figure 6-12: Distribution of migration times used in the Quicksort benchmark

I implemented the load discovery mechanism using periodic discovery queries. The period be-

tween queries increases exponentially with the distance between nodes, since the number of queries

required grows exponentially with network radius. The base period for discovery queries between

neighboring nodes is set to250 cycles. This period was chosen to be slightly larger thanTm in an

attempt to provide a sampling period balanced against the expected rate of change inTw as a result

of migration. The response to a discovery query is the processor’s time-averagedTw over the past

twenty thread-running events.

GivenTm = 200, I set the nominal steal threshold atTw = 200 for nearest neighbors. The

steal threshold increases linearly with node distance, in order to compensate for the extra routing

overhead of reaching farther nodes. The optimal rate of steal threshold increase with distance is

probably not linear, but will not affect this benchmark since there is only enough work for two

nodes.
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The results of the load balancing mechanism on the Quicksort benchmark can be seen in fig-

ure 6-13. This figure showsTw versus time for a Quicksort of 200 elements with and without load

balancing using nominal steal metrics. A speedup of 12.3% was observed using the nominal steal

threshold; lowering the steal threshold slightly and decreasing the work stealing interval brings

the speedup to over 15%. I believe that these more aggressive steal thresholds are not generally a

good idea, however; more frequent work discovery packets congests the network and would have a

negative impact on performance in applications with more internode communication.

Thread pushing was also implemented to investigate potential benefits of this mechanism. Thread

pushing only happens when a new thread is being created. This kind of thread pushing is trivial to

implement on the Q-Machine; it is simply aSPAWNinstruction targeted at a neighboring node.

The danger of thread pushing is that the decision to push is based on stale information; a cluster

of nodes can overload a single nearby unloaded node if all the loaded nodes decided to push work

onto the unloaded node simultaneously. Even though the danger of overload is small because there

is only one source node for threads in this Quicksort benchmark, thread pushing was implemented

conservatively. A push only occurs when a neighbor’s load metric is observed to be near zero, and

the local load metric is observed to be very high, above 400 cycles. In the end, thread pushing was

used rarely and accounted for a 1 to 2% speedup in the Quicksort benchmark.

Figure 6-14 illustrates in greater detail the relationship between migration events andTw. One

can see from this figure howTw is reduced with every migration event. Also shown in this figure

is the load incurred on the migration target. Note that this load is kept fairly low throughout the

benchmark run.

The Quicksort benchmark demonstrates that the Q-Machine migration implementation is effi-

cient enough to speed up even simple code written with little thought for parallelism. In addition,

the migration mechanism is fast enough to provide a speedup on a benchmark that runs for just a

few tens of thousands of cycles. In contrast, most other migration mechanisms would take at best a

few thousand cycles to complete a single null-thread migration.

6.3.2 Matrix Multiplication Benchmark

A pair of matrix multiply kernels were written by Ben Vandiver in the People language for this

benchmark. The first kernel uses a single nested iterative loop to access the matrix elements and

multiply them. The second kernel uses streams to multiply the matrices. Streams are a unique

feature of the People language; they are essentially a way of explicitly revealing the underlying

104



0

50

100

150

200

250

300

350

400

450

500

13000 23000 33000 43000 53000 63000

runtime (cycles)

lo
ad

 m
et

ric
 (c

yc
le

s)

0

200

400

600

800

1000

1200

m
ig

ra
tio

n 
tim

e 
(c

yc
le

s)

processor 0 load
metric (Tw)

processor 2 load
metric (Tw)

work stealing events
(height is migration time)

thread push events
(see text)

work stealing
load threshold

Figure 6-14: Plot of the load balanced Quicksort benchmark with migration events overlayed.

queue structures of the architecture to the programmer. The streaming matrix multiply kernel builds

two streams that source the matrix multiply data, and a streaming operator that computes and stores

the multiply result. These streams allow index computation and array access to happen in parallel

with the actual multiply operation. Part of the streaming matrix multiply code is shown in figure 6-

15. A stream is called amodule in People, and its inputs aresource s and its outputs aresink s.

The operationsnq() anddq() are used to enqueue and dequeue data on a stream, respectively.

The standard matrix multiply kernel is used as the reference point in this benchmark; it is a

purely single-threaded piece of code. The streaming matrix multiply kernel, on the other hand,

instantiates three threads, one each for the matrix sources and one for the multiply operation. Hence,

there is an opportunity for data migration to reduce access latencies.

I used a very simple data migration control algorithm in this benchmark. Every 200 cycles, the

most popular data element is migrated to the node of the most frequent accesser. The most popular

data element is determined by keeping a sorted, rolling list of all accesses over a window of 4000

cycles.

The result of applying this simple migration algorithm is shown in figure 6-16 for a 100x100
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module leftMat has sink[int], source[array[int]], source[int]
as "vals for left side", "array to use", "size"
internally source[int] vals, sink[array[int]] arr, sink[int] s {

int i,j,k;
array[int] mat = dq(arr);
int size = dq(s);
i=0;
while (i < size) {

int offset = i*size;
j=0;
while (j < size) {

k=1;
nq(vals,mat[offset]);
while (k < size) {

nq(vals,mat[k+offset]);
k = k + 1;

}
j = j + 1;

}
i = i + 1;

}
}

void matmult(int size, array[int] mat1, array[int] mat2, array[int] mat3) {
sink[int] lhs,rhs;
source[array[int]] arr1,arr2;
source[int] s1,s2;

construct leftMat with lhs, arr1, s1;
construct rightMat with rhs, arr2, s2;
nq(arr1,mat1);
nq(s1,size);
nq(arr2,mat2);
nq(s2,size);

int i,j,k;
i=0;
while (i < size) {

j=0;
while (j < size) {

k=0;
int sum = 0;
while (k < size) {

sum = sum + dq(lhs)*dq(rhs);
k = k + 1;

}
mat3[j+i*size] = sum;
print(sum);
j = j + 1;

}
i = i + 1;

}
}

Figure 6-15: Portion of the streaming matrix multiply benchmark written in People.
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matrix multiply, and in figure 6-17 for a 15x15 matrix multiply. One can see that for the 100x100

matrix multiply, the time per iteration drops after the first iteration from around 7,000 cycles to

around 1,650 cycles per iteration–about a factor of 4.2 speedup. Note that in figure 6-16, the first

iteration time includes the migration overhead for moving two 10,000 element matrices.

On a 15x15 matrix multiply, the migration occurs later, and the time per iteration goes from

1,100 cycles to around 350 cycles. The migration occurs later because the most popular accessors–

in this case the matrix multiply stream sources–have to build up “popularity” over the thread that

initialized the matrix through a 4000 cycle profiling window. This translates to a speedup of 3.2.

It is also interesting to note that the streaming implementations outperform the single-threaded

matrix multiply implementation by about a factor of two in each benchmark case. This is a positive

indicator of the performance benefits of the streaming features in the People language. In this spe-

cific case, the speedup is a result of parallelizing (decoupling, for those fond of DAE architectures)

the memory accesses and the multiply operation.

The per-iteration speedups in the streaming benchmarks are due entirely to the reduction in la-

tency brought about by data migration; load balancing has no impact on the results as the benchmark

uses only three threads. One can see in the benchmark results that the multi-threaded streaming im-

plementations without data migration actually perform worse than the single-threaded implemen-

tation. This is because People does not account for memory placement with respect to streaming

threads, therefore, good performance relies on the availability of a specialized migration mechanism

that reduces latency. In this specific instance, the benchmark was run on a 16-node machine, and

the source data for each of the streams was migrated across a distance of two router hops each.

This move reduces the best-case access latency from 55 cycles down to 7 cycles. Note that another

approach to fixing this access latency problem is to use better latency hiding techniques in the code,

and to not have the source threads wait for each load to come back from the memory node before

forwarding the data onto the streaming multiplier. However, this is a compiler issue, and one of the

major points of this benchmark is to demonstrate that data migration can be successfully applied to

a user program.

6.3.3 N-Body Benchmark

For this benchmark, I wrote an N-Body gravitational simulator in People. The algorithm used is

the basic particle-particle method, where every body computes the net contribution of every other

body’s force each time step. The second order Runge-Kutta method was used to solve the differ-

107



0

5000

10000

15000

20000

25000

30000

1 11 21 31 41 51 61 71 81

iterations

cy
cl

es
/it

er
at

io
n

streams, no mig, no lb

no streams

streams, data mig, no lb
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ential force equation at the heart of the particle-particle method. The numerical core of this code

comes from [Che], [Sch] and [Har00]. A graphical representation of the output of the N-Body

gravitational simulation can be seen in figure 6-18. This figure shows the first few timesteps of a

12-body simulation being run on a 64-node Q-Machine.
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Figure 6-18: Plot of the first few time steps of the N-Body benchmark output

My initial N-Body implementation created a thread per planet and used a binary tree of object-

based semaphores to determine the completion of each iteration; Ben Vandiver optimized this to use

a tree composed of streams to signal the completion of each iteration. Ben’s streaming optimizations

plus a few other tweaks reduced the per-iteration time of the N-Body benchmark by about a factor of

4 on its own. Ben’s optimizations included static data placement and re-use optimizations, so there

is little to gain through dynamic data migration; the only thing that matters is that the initial data

be distributed roughly evenly across all the nodes of the machine. Careful initial data placement is

important because the actual gravitational force computation is done by an object method invoked

by the combining tree, and object methods invocations always spawn near the object’s instance

variables.

Despite the optimizations, a speedup of 36% was achieved by applying program-guided latency-

driven migration to the N-Body benchmark. This result can be seen in the cycles per iteration times

plotted in figure 6-20. In order to understand how latency-driven thread migration was used to speed
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up the N-Body benchmark, one must first understand the structure of the benchmark code.

The inner-loop of the N-Body benchmark consists of a loop that visits each of the planets and

computes their partial force contribution on the local planet. Please see figure 6-19. Before entering

the inner-loop, all of the instance variables of the local planet object are pulled into temporaries that

the compiler holds in queues. These instance variables are written back to the planet object upon

exiting the inner-loop. At the beginning of each loop iteration, a remote planet is chosen by the

statementBody body = planets[jj]; . The inner-loop then computes the remote planet’s force

contribution; during this computation, the loop repeatedly references the remote planet’s instance

variables. Since the remote planet is typically located on another node, these memory references

are fairly slow without any mechanism for reducing access latency. Hence, on the line immediately

following the body initialization, I call themigrate(Body) system function. This function causes

the local thread to immediately deschedule itself and migrate itself to the home node of the argu-

ment. Thismigrate() call decreases the inner-loop computation time by 36%. This speedup is

due entirely to the reduction in access latency to the remote planet’s instance variables. Hence, the

speedup is proportional to the number of remote instance variable references within the inner loop.

For example, simplifying the N-Body differential equation solver to use a less accurate but faster

Euler method causes thread migration to be ineffective because only three or four instance variable

accesses are required in the Euler method. In contrast, the second-order Runge-Kutta method used

to derive these results require nineteen instance variable accesses. Note that data migration is never

an effective method for speeding up the N-Body application as written because at any given time,

multiple threads located on multiple nodes are accessing an object’s instance variables.
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float ax=this.ax; // load up the local planet variables in queues
float ay=this.ay;
// etc...

int jj = 0;
while( jj < size ) {

if((myIndex != jj)) {
Body body = planets[jj]; // access a remote planet
migrate(body); // migrate ‘‘this’’ to planet’s node

rad = (x-body.x)*(x-body.x) + (y-body.y)*(y-body.y);

// Runge-Kutta kernel omitted for clarity...

ax = (ax1 + ax2) / 2.0;
ay = (ay1 + ay2) / 2.0;

}
jj = jj + 1;

}

this.ax = ax; // write back the local planet variables
this.ay = ay;
// etc...

Figure 6-19: Inner-loop of N-Body benchmark code.
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Q-Machine.
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Chapter 7

Conclusions and Future Work

...but I like big wrenches. Who cares if there’s no bolt big enough
for this wrench? Someone will make one someday.

—Dominic Rizzo

7.1 Conclusions

This thesis described and demonstrated an abstract machine architecture, the ADAM, that enables

high-performance migration mechanisms in hardware. ADAM’s architecture features ubiquitous

queues that serve as a flexible, uniform hardware abstraction for thread and memory communica-

tion. These queues also serve to decouple thread and memory timings. The ADAM architecture

also features a capability-based memory system, which enables the fast resolution of data bounds

and the enforcement of bounds checks in hardware. Finally, the architecture features a massively

multithreaded programming model where threads are simply special cases of data capabilities, so

that a mechanism similar to that used to migrate data can be applied to threads as well. The mas-

sively multithreaded nature of the architecture also serves to hide latency by context switching on

thread stall events.

The features of the ADAM architecture conspire to enable an efficient and fast migration mech-

anism for data and threads. This migration mechanism relies on two protocols implemented in

hardware: remote data lookup via data locater pointers, and temporally bidirectional pointers for

pointer updates after migration events. The migration mechanism itself is fairly simple; in essence,

the algorithm is “freeze, copy, and forward”.
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My migration mechanism’s performance was demonstrated in several benchmarks. These bench-

marks were run on a predominantly cycle-accurate machine simulator written in Java. The bench-

marks were chosen to feature both the load-balancing and the latency-reduction abilities of the

implementation. An in-place Quicksort benchmark showed a 12.3% performance increase with

simple work-stealing and thread-pushing load balancing algorithms. A streaming matrix multiply

benchmark showed a performance increase of 4 times when latency-driven data migration was ap-

plied. Finally, an N-Body gravity simulation benchmark demonstrated a speedup of 36% when

latency-driven thread migration was applied.

My migration mechanism performs orders of magnitude faster than previous work. Active Mes-

sages [WGQH98], a high performance software implementation of thread migration, can push-

migrate 6000 null threads per second; this translates to about 300�s per migration event, or about

16,000 processor cycles at the paper’s 50 MHz processor clock speed. My architecture can push-

migrate null threads in around 70 cycles, which translates to about 70 ns per migration event in

the proposed hardware implementation. This translates to about a factor of 5000 speedup. My

migration mechanism performance is fast enough that it is attractive even when compared against

traditional latency hiding mechanisms such as caches: a Pentium 4 L2 cache fill takes about 175 ns,

or 140 RAMBUS clock cycles [CJDM01]. The performance of my thesis’ migration scheme hope-

fully makes it an option for latency management in future high-performance parallel computer im-

plementations.

7.2 Future Work

There are many interesting avenues to explore for future work. The most important issue to address

will be algorithms for effectively controlling the migration mechanism. Other issues requiring at-

tention will be programming languages and development environments for the architecture. Finally,

the architecture needs to be reduced to practice with a real hardware implementation.

7.2.1 Improved Migration Control Algorithms

My work describes some simple metrics and algorithms for controlling the migration mechanism.

While these algorithms performed well enough to show a healthy performance increase on several

benchmarks, they are far from optimal or complete. My experience with my simple migration

control algorithms indicate that these issues will be important during the implementation and testing
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of future control algorithms:

� Metrics. Metrics are required to summarize communication latency and processor load to a

control algorithm. Understanding these metrics and choosing the right data to report is a pre-

requisite to making intelligent control decisions. A good metric should also be implementation-

independent and scalable with technology.

� Flexibility. While a control algorithm can be shown to be optimal under a set of restricted

operating conditions, a useful control algorithm must have bounded performance over a wide

range of operating conditions.

� Robustness.Hardware failures are inevitable in any large system. A good control algorithm

should be robust in the face of hardware failures; it would be preferred if the algorithm were

smart enough to move data out of failing nodes.

� Retries. In the Q-Machine implementation, blocked messages are re-sent; each delivery attempt

increases the effective latency of the message by an amount proportional to the resend backoff

time. An intelligent migration control algorithm should recognize these situations and abort the

migration process if the additional latency of resending the migration packet will hurt overall

performance.

7.2.2 Languages and Compilers

ADAM was developed in parallel with languages that could leverage its unique features; in fact,

over the course of development, two languages, Couatl and People, were developed by Ben Van-

diver [Van02].

Couatl is the first language developed for the ADAM platform; it is a simple object-oriented

language that employs a technique known aspersistent methodsto perform object dispatch. Persis-

tent methods are started once for every instance of an object, and never terminate. Every object has

associated with it a persistent method which acts as a server for method invocations. The persistent

server method waits on a client to enqueue a method invocation request into a designated request

queue. Upon receipt of a request, the server method performs a method lookup and spawns a new

thread of execution for that method. Couatl was primarily developed to prove that the ADAM pro-

gramming model is viable and that reasonable compiler analyses can generate code that makes use

of the queues without deadlocking. It also proved that the thread-per-method model is a viable pro-

gramming model. The primary problems with Couatl include no programmer-level visibility of the
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queue structures, and no inherent support for spatial awareness. Code generated with Couatl would

place all methods and new objects onto a single node, and relied on the load balancing mechanism

to improve performance.

People (from PPL, Parallel Programming Language) is the successor to Couatl. People also

sports an object-oriented programming model. Its most significant addition is support for stream-

ing constructs that expose the queues within the core of the machine to the programmer. Streams

represent a way for a programmer to explicitly schedule static communication patterns. These

streaming constructs were used in the Matrix Multiply benchmark, for example, to set up a static

array-access/multiply pipeline. They were also used in the N-Body benchmark to create a static

combining tree for determining when all threads were finished computing their result during each

time step.

Future languages for the ADAM architecture should also include primitives to stripe, split and

scatter arrays and vectors. A parallel-map operator would also be useful, as well as mechanisms

to simplify the building of fan-in and fan-out trees. Also required is run-time support for garbage

collection. For an efficient implementation of parallel garbage collection, please refer to Jeremy

Brown’s thesis on Sparsely Faceted Arrays (SFAs) and scalable parallel garbage collection. [Bro02]

7.2.3 Hardware Implementation

An important step in any architecture’s evolution is its hardware implementation. Fortunately, the

very nature of an abstract machine architecture lends itself to incremental implementation. In addi-

tion, Q-Machine implementation’s dilation-2 fat-tree network has fault tolerance built in; [DeH93]

describes in detail how the network implementation can withstand a single failure in any component

or link without any loss of logical connectivity. Finally, the ADAM architecture and the Q-Machine

implementation were designed with the practical issues of manufacturing yield and obsolescence re-

sistance in mind. Manufacturing yield on a Q-Machine chip-multiprocessor die can be near 100%.

Thanks to the hardware abstraction of the ADAM, chips with multiple bad processors are still sal-

able; the runtime system just needs a map of the bad locations so that no data or threads are migrated

into the broken nodes. The hardware abstraction of the ADAM also helps extend the operational

life of the architecture; as nodes malfunction, they can be replaced with new nodes implemented

in the latest process technology without a need to recompile. Combined with a migration control

system that can move data and threads out of a failing node, a system could run for years while

being constantly upgraded – without ever being shut down.
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7.2.4 Transactions

Hardware support for transactions is very useful in large, parallel architectures. Transactional roll-

back enables greater levels of speculative parallelism, and transactional checkpointing enables a

greater level of dynamic fault tolerance. The ADAM architecture has some unique features that

enable future implementations of transactions in hardware.

The first observation is that a queue can be turned into a transactional log if the “dequeue” op-

eration is reversible. In other words, a dequeue operator should merely advance adequeue pointer,

without throwing away any data. Given this transformation, the computational state of an ADAM

thread can be saved by simply remembering all of the enqueue and dequeue pointer offsets. In order

to reclaim memory, computation can be committed after the necessary conditions have passed by

throwing away some data. Memory state can also be preserved with this scheme by using only

exchange operators on memory, and reversing the exchanges during rollback.

The second observation is that an ADAM thread’s state is entirely represented within the thread

capability. Hence, checkpointing can be done at a coarser grain than the previously suggested

pointer-rollback method by just making copies of thread state. This coarse-grained transaction

mechanism is easier to implement, and requires less hardware modification.

Of course, the devil is in the details. Many issues, such as how to deal with migration and non-

deterministic message ordering between threads, need to be resolved before either scheme can be

declared a success.

7.3 Final Remarks

As the Future Work section indicates, the ADAM architecture and the Q-Machine implementation

are full of low-hanging fruit. In addition, the ADAM architecture has implications for high per-

formance parallel computers beyond just enabling a high performance data and thread migration

scheme. I hope to explore these possibilities in the near future. I also encourage anyone who has

taken the time out to read my thesis to investigate and to implement aspects of the architecture, and

to please feel free to send me an email if they have any questions. My email address for life is

bunnie@alum.mit.edu . I look forward to hearing from you.
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Appendix A

Acronyms

Q: What do you think will be the biggest problem in computing in
the 90’s? A: There are only 17,000 three-letter acronyms.

—Paul Boutin fromThe New Hacker’s Dictionary

This chapter lists, for the reader’s convenience, the acronyms and abbreviations used in this thesis.
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$ Shorthand for cache
ACK Shorthand for Acknowledge
ADAM Aries Decentralized Abstract Machine
AM Attraction Memory
AMD Advanced Micro Devices
ASIC Application Specific Integrated Circuit
ASS ADAM System Simulator
BIST Built In Self Test
ccNUMA Cache-Coherent Non Uniform Memory Access
CM Connection Machine
CMOS Complementary Metal Oxide Semiconductor
CMP Chip Multi-Processoror Chemical-Mechanical Polishing
COMA Cache Only Memory Architecture
Couatl Java-derivative object-oriented proto-language for ADAM
CPU Central Processing Unit
CTO Chief Technology Officer
DAE Decoupled Access Execute
DDM Data Diffusion Machine
DMA Direct Memory Access
DMEM Data Memory
DRAM Dynamic Random Access Memory
ECC Error-Correcting Code
EMEM Environment Cache
EXEC Execution Unit of the Q-Machine core
FOn Fan Out ofn
I$ Instruction Cache, often abused to refer to a hybrid work-window scheduler queue
IBM International Business Machine
ID Shorthand for Identifier
IP Instruction Pointeror Intellectual Property
IPC Instructions Per Clock
ISA Instruction Set Architecture
KSR Kendall Square Research
LSB Least Significant Bit
MIMD Multiple Instruction Multiple Data
MIT Massachusetts Institute of Technology
MSB Most Significant Bit
NI Network Interface
NOW Network of Workstations
NSRF Named State Register File
NUMA Non-Uniform Memory Access

Table A.1: Table of Acronyms

120



ORB Object Request Broker
OSI-7 Open Systems Interconnection 7-layer model
PC Program Counteror Personal Computer
People Second-generation language for ADAM, supporting streaming constructs
PHY Physical and Data Link Layers (from OSI-7 model)
PIM Processor In Memory
PPL Parallel Programming Language (a.k.a. People)
PQF Physical Queue File
Q$or QC Queue Cache
RPC Remote Procedure Call
RISC Reduced Instruction Set Computer
SCHED Scheduler Co-processor
SFA Sparsely Faceted Array
SGI Silicon Graphics Incorporated
SIA Semiconductor Industry Association
SMEM Scheduler Co-processor Memory
SMT Simultaneous Multithreadingor Surface Mount Technology
SOI Silicon on Insulator
SRAM Static Random Access Memory
SSRAM Synchronous SRAM
src abbreviation for Source
TAM Threaded Abstract Machine
TSMC Taiwan Semiconductor Manufacturing Corporation
TTDA Tagged-Token Dataflow Architecture
VLIW Very Long Instruction Word
VQF Virtual Queue File
VQN Virtual Queue Number
XPRT Network and Transport Layers (from OSI-7 model)

Table A.2: Table of Acronyms, continued

121



122



Appendix B

ADAM Details

My two favorite languages are still assembly and solder.

—bunnie

This appendix provides many of the details omitted from chapter 3 in the interest of restricting the

body text of the thesis to only features and issues relevant to migration. Note that this appendix does

not justify all the design decisions as rigorously as the main chapters of the thesis; in fact, some of

the implementation decisions, such as the use of a simplified floating point format, are mostly a

result of my own prejudices. On the other hand, the choice of floating point format has little to do

with the meat of the architecture, and I present such material here just because I can.

B.1 Data Types

All ADAM data types are 80 bits wide; they consist of a 64 bit data field and a 16 bit tag field. Four

integer data types are supported: signed long (referred to as “word”), packed signed integer, packed

signed short, and packed unicode characters. Only one floating point data type is supported, similar

to the IEEE-754 double format. See figure B-1 for detailed bit-level formatting of the data types.

Packed data is operated on in vector form; most arithmetic operations are supported on packed

data. Any arithmetic operation involving a capability, however, is only valid with a word. Any

integer type is supported for memory queue offsets, however. Please see section 3.2.3 for more

information on the ADAM memory model.

All data types are fully tagged to identify their type, as well as any flags associated with their

status. See figure B-2 for details. Errors on arithmetic operations can be forced to be trapping and
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16 bit unicode
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floating
point data

52 bit mantissa ("f")
11 bit

exponent
("e")

sign
("s")

capability tag, 0 = capability, 1 = data
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tag and flags

15 bits
tag and flags
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tag and flags
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only)
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int constant
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only)

dataformats.eps

Figure B-1: Data formats supported by ADAM
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non-trapping. Trapping errors cause the thread to halt and an exception to be thrown; non-trapping

errors allow execution to proceed normally (which may or may not imply halting) and the error

condition to simply be noted in the result’s tag and flags field. This error condition will propagate

through data operations; in other words, adding a NaN-tagged float with a valid float will result in a

NaN-tagged float.

An immutable bit is included in the tags to indicate static data that cannot be altered. Identifying

data as static allows management routines to copy immutable data freely, thus enabling cheap auto-

matic mechanisms for distributing frequently referenced constants. Writing to data that is declared

as immutable has no effect on the data, may throw an exception, and always sets a bit in the status

register to indicate that an illegal write occurred.

6-bit type field  +
9-bit type-dependent

flags field

w
ord

pint

pshort

pchar
float

O
S

valid

overflow
.a

valid

overflow

N
aN

/
+

/- infinity

underflow

valid reserved

MSB LSB

LSB

LSB

overflow
.b

overflow
.c

overflow
.d

used only for packed types

m
utable

resvd

m
utable

resvd

m
utable

prim
ary

prim
ary

prim
ary

00 = number
01 = NaN
10 = +infinity
11 = -infinity

typeformat.eps

Figure B-2: Tag and Flag field details

A primary bit is also included in each tag that is used by the data migration manager to indicate

if this is the primary copy of the data. This is particularly useful for the scenario of partial migration,

where the primary capability containing some data has migrated but the data itself has yet to move.

See chapter 4 for more details on migration mechanisms and implementation.

A subset of the IEEE 754-1985 floating point standard is required by ADAM architecture. The

differences between the IEEE 754-1985 standard and the ADAM format are chosen to simplify

implementation and enhance performance with a small reduction in precision. These differences

are:

� ADAM does not support single-precision floats and its associated operations and conversions,

with the exception of constant fields in opcodes
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� NaN and�1 are specified in the tag field, so exponent = 2047 is now valid, and the exponent

bias is now +1024

� ADAM has no denorms (accuracy versus IEEE 754-1985 reclaimed by indicating special num-

ber types in the tag field, as described immediately above)

� one rounding mode: von Neumann style rounding

To summarize, the value of the floating point number isv = (�1)s2e�1024(1:f) unlesse = 0

andf = 0, in which case the value isv = (�1)s0 (signed zero).

Aside from these differences, the ADAM floating point format defers to the IEEE 754-1985

standard [Ste85]. In particular, the handling of NaNs, Infinity, and Signed Zero in the context of

Exceptions, Traps, Comparisons and Conversions are identical.

The ADAM instruction format allows for 32-bit constants to be stored in a standard opcode.

Floating point instructions can thus store a single-precision format float in the constant field, but

this is immediately converted to a double-precision number upon use. The single precision floats

likewise do away with the denorm representation; hence, NaNs and�1 are not representable in the

single-precision floating point constant field. The value of a single precision floating point number

is v = (�1)s2e�128(1:f) unlesse = 0 andf = 0, in which case the value isv = (�1)s0 (signed

zero).

von Neumann style rounding is implemented by adding a Least Significant Bit (LSB) of preci-

sion to floats as the floats enter the arithmetic pipeline, and carrying this LSB of precision throughout

the pipe. This extra LSB is set to a binary “1” as numbers enter the pipe, and rounding is done by

simple truncation at the end of the pipe. This results in an expected value of the extra LSB to be1

2

at the end of the day.

An implementation may choose use to full IEEE 754-1985 style rounding to gain the extra

precision, but there is no provision in the stock architecture specification to choose which rounding

mode to use; the default and only rounding mode should thus be “round to nearest” per IEEE 754-

1985.

B.2 Instruction Formats

ADAM has a sequestered code space, like that in a Harvard Architecture. The code space, unlike

the data and environment spaces, is global and shared among all nodes; this is feasible because the

code space ismostlyread-only. The management coprocessor takes care of handling any page faults
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or the loading and unloading of code in code space. ADAM can dynamically request new object

classes to be loaded into code space with theLDCODEinstruction.

The code space is mostly read-only because some instructions contain hint fields to the instruc-

tion prefetcher. The actual values contained in the hint fields are implementation-dependent and any

ADAM implementation must execute code correctly regardless of the hint field’s contents; however,

a compiler is free to warm up the hint fields with bit patterns that may improve start-up performance

for a specific implementation. Instruction caches can replace lines that have not been written back

due to a lack of instruction memory bandwidth without any impact on correctness of execution.

Likewise, write values do not have to propagate throughout the system even though the code is

globally shared among all nodes. However, in the case that values do make their way back to their

original file on disk, the next time code is loaded, it may run faster.

8 bits
opcode

7 bits
VQA

7 bits
VQB

7 bits
VQC

32 bits signed constantstandard OP

8 bits
opcode

7 bits
VQC

7 bits
VQA

32 bits signed rel. offsetbranch OP

link
(opt)

cond
(opt)

8 bits
opcode

7 bits
VQA

48 bits unsigned dest storage hintjump OP

dest

8 bits
history

hint

copy/replace tag, 1 = copy/replace, 0 = dequeue/enqueue

8 bits
opcode

48 bits hint datahint OP
8 bits
hint
type

unused

opcodeformats.eps

Figure B-3: Format of ADAM opcodes

Instructions are 64 bits long and have four basic formats: standard, branch, jump, and hint

(see B-3). Every instruction has an 8-bit opcode field. Every queue specifier in every instruction is

modified by a copy/clobber bit. Setting the copy/clobber tag enables the compiler to treat the queue

with semantics similar to that of a register. A copy operation extracts a value from a queue without

changing any of the values in the queue; a clobber operation tests to see if a queue is empty, and if

it is, waits until a value is written to it, and then replaces the value. The clobber operation is invalid
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on a remapped queue and attempting to perform such an operation triggers an exception.

The standard instruction has three virtual queue specifiers, each 7 bits long. The first two (VQA

and VQB) specify read queues; the final (VQC) specifies the write queue. The standard instruction

also contains a 32-bit signed constant field, thus allowing the standard instruction to specify up to

three data sources and one data destination, although most instructions do not take advantage of this

possibility.

Certain instructions, known as special-format instructions, may interpret the VQA, VQB, or

VQC fields as constants instead of as a queue to reference to extract or store data to the queue file.

These instructions typically deal with the creation, maintenance and destruction of queue maps.

The compiler and/or assembly language programmer typically knows at all times the exact queue

number that a mapping is applied to, so it does not make sense for most queue map maintenance

instructions to accept arbitrary dynamically generated queue values. Hence, the VQA, VQB, and

VQC fields can be used to immediately refer to a queue number for these instructions.

Branch instructions have a condition field, a link field, a branch history hint field, and a 32-bit

signed branch offset. Either the condition or the link field may be omitted from an instruction, but

not both. An 8-bit history hint field is also provided so that a branch history can be stored with the

branch instruction. Note that the format of the hint field is implementation-specific, and that any

ADAM implementation must function correctly regardless of the hint field contents.

Jump instructions have a destination field and a 32 bit unsigned jump destination hint. Only

the lower 32 bits of the value in the queue specified by the jump destination field is loaded into

the program counter. The jump destination hint field is provided so that an implementation can

memoize the most recent jump address. Note that the format of the hint field is implementation-

specific, and that any ADAM implementation must function correctly regardless of the hint field

contents.

Hint instructions are no-ops that provide hints to the runtime system. The hint may or may not

be platform dependent; this information is encoded within the hint type field. Examples of hints

are data placement directives, prefetch directives, and thread yield directives. Hints that are not

recognized by the run-time are ignored.

Please consult appendix D for detailed listing of the instructions supported by ADAM and their

descriptions.
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B.3 Capability Format

The capability format used by ADAM [BGKH00] allows for exact base and bounds determination

from an arbitrary capability with the use of front-padding to eliminate a small amount of rounding

overhead. The total padding penalty incurred by the capability format is bounded to be less than

11.2% [BGKH00].

9 bits
tag

34 bit address, word aligned16 bit proc ID
15 bits base/

bounds

1 bit capability
tag

capability

environment / data
valid
primary
marked
read
write
uncopyable
owner
increment-only

6 bits block
size

exponent

4 bits
length

5 bits
finger

5 bit
SQUID

capabilityformat.eps

Figure B-4: ADAM capability format

The method for extracting the base and bounds from a front-padded capability is fairly simple,

and can be implemented directly in hardware. As seen in figure B-4, a capability includes block

size, length, finger and address fields. A combination of block size and length can be used to

determine the end of a capability; the finger field is used to deduce the location of the beginning of

the capability given a pointer into the middle of the capability. A block size of all 1’s (63 in this

case, because the block size field is 6 bits long) is a special case where the length field is directly

equal to the number of words in the capability. This unique structure was chosen to simplify the

hardware implementation, as described in [BGKH00].

The method for extracting the base and bounds from a front-padded capability is as follows,

written is pseudocode:

B = block size field value

L = length field value
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F = finger field value

A = address field value

if( B == 63 ) f

// L, B are immutable

// A and F are updated by capability arithmetic ops,

// with check made to ensure that F < L

capability.beginning = A� F;

capability.length = L+ 1;

capability.end = capability.beginning + capability.length;

if( F � L ) f

throw capability bounds exception

g

desired data = * A;

g

else f

// & is the bitwise AND operator

capability.beginning = A & (� ((1� B)� 1))� (F � (1� B));

capability.length = (1� B) � (L+ 1);

capability.end = capability.beginning + capability.length;

desired data = * A;

g

The only valid operations on a capability are addition and subtraction. The new address that results

from an arithmetic operation is simple to calculate:

X = signed integer offset to be added

A2 = new address

A1 = old address

A2 = A1 + X

The method for recalculating the finger field of a capability that has had an arithmetic operation on

it is as follows, written in pseudo-code with verilog bitfield syntax:

F2 = original finger field

F1 = new finger field

X = signed integer offset to be added

B = value of the block length field

if( B == 63 ) f

F2 = F+ offset;

g else f

F2 = (A+ offset� ( A & (� ((1� B)� 1))� (F � (1� B))))� B;

g
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The value of the new finger field should be less than the value of the length field but greater than zero;

if not, an error should be flagged. An efficient hardware implementation of the above calculation

is also given in [BGKH00]. Note that capabilities cannot be dynamically resized. This implies that

the length and block size fields should never change after an arithmetic operation. In order to grow

a capability, a new one must be created and the contents of the old one copied into the new one.

The ADAM capability format contains an explicit processor node ID embedded within the ad-

dress field of the capability. The size of the node ID field allows for up to 65,536 processors to be

present in the system, but the actual allocation of capabilities on these nodes is left up to the oper-

ating system. All ADAM applications can run on implementations with anywhere between one and

65,536 nodes, with no requirement on the distribution of node IDs, because capabilities are opaque

to the programmer and the allocation process is implementation-specific. Valid node IDs can even

change dynamically, so long as the OS is careful to ensure that a node is empty before deactivating

its ID. Dynamic ID reassignment can be useful in situations where environmental monitors detect

an impending failure, or where users wish to hot-swap nodes to perform upgrades or service. Note

that the amount of available memory for applications to run does vary with the number of nodes in

the system, but the address space is fairly large so users should rarely encounter this situation.

The capability format also includes a number of bits for memory management and security

purposes. These bits are:

� environment/data: indicates if the capability is for environment space or for data space. Nor-

mally this bit should not be modified after capability creation.

� increment-only: indicates that only positive offsets from the capability base can be accessed

� valid: indicates if a capability is valid. An attempt to dereference an invalid capability results in

a protection fault.

� marked: used for garbage collection

� read: indicates that data can be read from the capability.

� write : indicates that data can be written to the capability.

� uncopyable: indicates that only dequeue operations are allowed on the capability; an attempt to

copy the capability will result in an exception being raised.

� owner: when the owner bit is set, the read, write, and uncopyable bits can be overridden.

� primary : indicates that this capability is the primary working copy. For capabilities in data

space, it marks the endpoint of a migration list. For capabilities in environment space, it also

marks a thread with this bit set as the only runnable copy.

131



� SQUID: Short Quasi-UniqueID . A short tag field that contains a randomly generated ID num-

ber assigned at the time of capability allocation; when a capability is migrated, this field is di-

rectly copied. Use of this field reduces the cost of capability inequality comparisons. [GBHK00]

B.4 Über-Capability and Multitasking

Theüber-capability is a capability that has access to the entire memory space of the machine. This

über-capability is used by kernel threads for system management functions, since ADAM provides

no supervisor mode or explicit kernel permissions in the style of Java. On power-up, each physical

node starts code execution at location 0 in code space, and an ¨uber-capability is initially placed in

q0. Theüber-capability is set to be the size of the entire virtual memory available for that node, and

the owner bit is set. Through this mechanism, kernel code loaded at location 0 in code space can

have access to the entire machine. This kernel code is also typically the default exception handler

for the node.

Since ADAM is a virtual machine, multitasking on a single large machine is accomplished by

dividing the machine into smaller groups of physical nodes and starting an ADAM per task, and

each ADAM runs only one task. Load balance of the machine can be set in part by controlling the

number of nodes that an ADAM can access. This restriction of access can be accomplished in part

by limiting the size of the ¨uber-capability.

B.5 Exception Handling

Exceptions on ADAM are inherently imprecise. ADAM is a distributed machine that runs many

parallel threads; there is no clear definition of “simultaneity” in this scenario. ADAM’s take on

exceptions is two-pronged: first, the result of every exception-causing event is tagged; second, as

much local state relevant to the exception is preserved at the instant an exception is detected.

An exception capability is included as part of every thread’s state. This exception capability is

initialized on thread creation to point to a default exception handling object (usually an OS-defined

object), and can be over-ridden by the user at any time. The default handler is invoked in the case

that the user-defined exception handler is invalid. Users can use this mechanism to build chains of

exception handlers, as illustrated in figure B-5.

Exceptions are handled on a per-processor node basis. When a thread encounters an exception,
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the exception handler is immediately scheduled to run on that node, and is locked in as the only

runnable thread until the exception is resolved. The exception handler inspects the processor status

register and the Exceptioned Context ID register to determine the source of the exception. Then,

an OS-defined protocol is employed for communicating with the exceptioned thread, if necessary.

Usually, this protocol involves the exception handler forcing a flush of the exceptioned context from

the queue file and digging through and modifying the exceptioned context’s environment space. This

process can take thousands of cycles. Exceptions are intended to be rare events, and users should

avoid using the exception mechanism for anything other than exception handling. In other words,

they should be avoided in general as a mechanism for implementing APIs or hardware interfaces.

Users are instead encouraged to use queue mappings and opcode extensions of a form similar to

ALLOCATEorSPAWNinstructions. Opcode extensions can be implemented using the illegal opcode

handler mechanism described below.

some object

exception ptr

hardware default
exception ptr.

OS exception
handler

if no overriding
exception

pointer defined superclasses'
exception object +
durasive methods

exception ptr

local exception object +
durasive methods

super

etc...

may be initialized
to user-space handler

as well

exceptionscheme.eps

Figure B-5: Exception handling overview

Illegal opcode exceptions are handled in a special manner, similar to the Alpha architecture’s

PALcode. An illegal opcode dispatches into a look-up table in memory that has a hard-wired ad-

dress, and control flow is transferred to an implementation-specific microcode processor that has

access to all local state. The microcode processor could be as simple as a dedicated context ID

on the ADAM plus instruction set extensions. The code that the microcode processor executes is
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stored in a reserved location in kernel memory; this allows for instructions implemented in future

versions of the architecture to be emulated via software patches set up by the OS. During emulation

mode, the processor behaves as if it had stalled, and errors during emulation mode lead to undefined

behavior. I recommended that the default behavior for an illegal opcode be an emulatedTHROW

instruction.
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Appendix C

Q-Machine Details

A novice was trying to fix a broken Lisp machine by turning the
power off and on.

Knight, seeing what the student was doing, spoke sternly: ”You
cannot fix a machine by just power-cycling it with no understand-
ing of what is going wrong.”

Knight turned the machine off and on.

The machine worked.

—Traditional AI Koan

This appendix provides many of the details omitted from chapter 5 in the interest of restricting

the body text of the thesis to only features and issues relevant to migration. In particular, this

section discusses the details of the PQF implementation, the network interface and transport protocol

implementation, and the network topology used in the Q-Machine implementation and the ADAM

System Simulator.

C.1 Queue File Implementation Details

This section discusses some of the important details of the PQF implementation used by the ADAM

system simulator. This piece of hardware is perhaps the most difficult single component to imple-

ment in the Q-Machine implementation, so it warrants some exploration within the context of this

thesis.
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C.1.1 Physical Design

At the heart of the VQF is the physical queue file (PQF), which directly implements an architec-

turally unspecified number of queues. A high-level sketch of a PQF can be seen in figure C-1.

The PQF is attached directly to the computational units. The size of the PQF should be set by the

details of the target implementation process; however, for good single-threaded performance, the

PQF should embody at least the 128 queues available to a single context. The PQF has a structure

similar to a multi-ported register file, and it is capable of swapping an entire queue into and out of

a Queue-Cache (QC) in a single cycle. Empty queues are not swapped into the QC; rather, they are

simply marked as empty and they consume no further bandwidth or space. The memory subsystem

contains special hardware to accelerate the marking and swapping of empty queues. A good com-

piler will arrange for threads to have all empty queues when execution stops, so that dead threads

consume a minimal amount of space until they are garbage collected.
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Figure C-1: A 3-write, 3-read port VQF implementation. pq =log2(# physical registers). Q-cache
details omitted for clarity.

The QC has a structure similar to a memory cache; when it overflows, cache lines are strate-

gically written out to main memory. The fact that every queue in the system has some location in
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memory reserved for its storage is a feature that is used by the GC mechanism to clean up after dead

threads or to migrate objects.

The physical queue file actually does not take up significantly more space than a regular mul-

tiported register file. The reason for this is the fact that a register file is wire-dominated; the active

transistor area underneath a register file cell is a small fraction of the area allocated for wires.

Figure C-2 illustrates the unit cell for a 3 read-, 3 write-port PQF with sufficient Q-cache wires

to manage a 4-deep queue.
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Figure C-2: PQF unit cell.

The wiring pitch is based on numbers taken from the TSMC 0.18�m process guide [Corb]. The

wiring requirements for the unit cell of the PQF would consume 4851�2 alone, using minimum-

pitch M5/M6 wires. For comparison, the area of a 6-T SRAM cell in the TSMC 0.18�m process is

574�2, allowing eight such cells to be placed underneath a PQF unit cell. For better performance,
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fatter wires with wider spacing may be employed, thus increasing the area underneath the unit cell

for the implementation of the actual Q structure storage and control logic.

Hence, a PQF implementation which has relatively shallow queues (4 to 8-deep) could be im-

plemented within a factor of two of the amount of space as a regular register file with a similar

number of ports. As process technology progresses, even greater depth queues will be enabled, at

the expense of either more or faster wires required for swapping to the Q-cache. A suitable, high-

performance asynchronous FIFO design is described in [MJC+99] and [MJCL97]. These depth-17

FIFOs operated reliably at a throughput of 1.7 Giga data items per second in a 0.6�m CMOS pro-

cess. Variants on this design have been explored by the author but are not presented here in the

interest of brevity.

A similar idea to the VQF implementation outlined here is the Named-State Register File

(NSRF). [ND91] [ND95] The NSRF is a register file with an automated mechanism for spilling

and filling thread contexts. It utilizes context ID numbers to uniquely identify the threads, and a

CAM memory to match the individual register file entries to their proper contexts. Unlike the VQF,

the NSRF dumps its state directly into the processor data cache. The Q-Machine does not do this

because there is no data cache on the Q-Machine, and even if there were, the combination of having

to add an extra read/write port to the D-Cache and cache pollution issues would present a strong

case for having a separate Q-cache. While the VQF is introduced primarily to support a disasso-

ciated physical-to-logical mapping of processors to threads, it is interesting to note that the NSRF

did provide small (9% to 17%) speedups to parallel and sequential program execution. Also of

note is that cache-style register files such as the NSRF and VQF provide higher overall register file

utilization: the NSRF was demonstrated to have 30% to 200% better utilization than a conventional

register file. [ND95]

The MAP block is responsible for determining if a queue is mapped to another context. The

MAP block is issued a request to discover a queue mapping at the time the instruction is issued,

giving it the whole pipeline latency of the machine to do this work. The MAP operation is potentially

complex and could be a cause of many stalls if the machine is not designed correctly.

The reason the MAP block only needs to be decoded for write targets is because the only legal

queue mappings allowed on the Q-Machine are forward mappings. In other words, it is impossible

to create a mapping that ”pulls” data out of another context; instead, one can only inject data into a

target context. As apparent from the diagram, the MAP function is thus invoked for both incoming

writes from the NI and for local results from the ALU/MEM unit. This keeps the read latency from
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the VQF low, while giving the MAP function time to do its translation for writes.

Recall that the context ID for a thread is in fact a capability that points to the storage region for

the thread’s backing storage and local data storage. This capability has permissions set such that a

user process cannot dereference this capability and use it as a memory pointer, but the OS and MAP

function have access at all times to this information. Refer to 3.2.3 for a review of the capability

address format of the Q-Machine. Given this, the basic algorithm for the MAP block is as follows:

� If the Proc ID field of the context ID does not equal to the Proc ID of the local processor, send

the write to the NI

� Otherwise, consult an internal cache that records the presence of a mapping on the specified

queue for the specified context. If there is no map present, pass the write on to the VQF. If there

is a map present, consult the map table to discover the proper mapping and ship the data off to

the NI for routing (even if it is a map-to-self). Mark the queue as full and block the thread until

the NI reports successful delivery of data

The map presence cache is used to help accelerate the typical case where there is no mapping.

A larger map presence cache can be held in memory than a cache with presence bits and the actual

mappings. In the case that the mapping table overflows, a lookup into a backup table must occur

and the machine thrashes. Also, in the case that a mapping does exist, it is okay to take a few

extra cycles to retrieve the mapping from memory. Perhaps a small cache of mappings will also be

maintained if the mapping lookups are determined to be a severe bottleneck.

C.1.2 State Machine

Fill requests from the PQF are generated in response to both missed read and write requests by

issued instructions. For read requests, a placeholder line is marked in the PQF and the fill request

is issued to the environment memory. For write requests, it is more complicated. If the queue

was never created before in the context, an empty line in the PQF is simply converted to a full-

fledged read/write line with the dirty bit marked. If there is an existing read placeholder, that line is

converted into a write-only line with the write data, pending a merge fill with the already issued fill

request. Otherwise, if there is space in the PQF, a write-only line is created and the merge read fill

request is issued. If there is no space in the PQF for the write request, a request for an empty line is

made, and once that is satisfied, a write-only line is created with a merge fill request.

Flush requests from the PQF are generated in response to the following events: PQF overflow,
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scheduler overflow, and migration. In the case of a PQF overflow, the LRU line is chose and booted

out of the queue file. The following two cases are not documented in figures C-3 and C-4. In the

case of scheduler overflow, the scheduler can no longer track all the ancillary data associated with

a context and it wishes to retire the entire thing to environment memory. In the case of a migration

request, the entire thread state must once again be retired to memory, but in addition some data may

be forwarded via the network interface before the retirement is finished. In order to get write-only

lines with merge-fills and dirty lines to be handled correctly on the destination of the migration,

a migrated line must move with its tags and inserted into the destination queue along with any

pending requests associated with the tag type. Eventually, the fill mechanism will work its way to

get the data from the original context via forwarding pointers, but in the meantime, computation

can resume. Any fills in progress to remedy placeholder or write-only lines locally are allowed to

complete, but the returned data is discarded. This is acceptable because write-only lines are retired

to environment memory with a merge request (and as previously noted, write-only lines directly

sent to the destination are inserted with merge requests). Placeholders, of course, can simply be

discarded.

The following state is also stored in a PQF line or must be synchronized with the environment

memory backing storage upon retirement, in addition to the raw queue data:

� Created bits

� Resident bits

� Mapped bits

� Map destination context

� Map destination VQN

� Map source queue flag (also impacts network interface)

� Map source queue sister (also impacts network interface)

The map source queue flag and map source queue sister values must be reported to the network

interface whenever a queue is swapped in or out of the PQF. This is because the originating thread

data is stripped from an incoming network packet by the transport layer implementation. Thus,

when the map source queue flag bit is set, the transport layer must preserve the originating thread

context from the network packet and generate a write request into the PQF for both the arriving data

and the context ID of the originator of that data.
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C.2 Network Interface

The network interface implements, in hardware, features analogous to the physical, data link, net-

work, and transport layers from the OSI 7-layer network stack. In this implementation, the physical

and data link layers are combined and referred to as PHY, and the network and transport layers

are combined and referred to as XPORT. This reduction of abstraction was chosen because first,

the network protocol for the ADAM implementation is very simple, and second, there is a strong

motivation to reduce latency by cutting out unnecessary buffering and packet encapsulation. That

being said, the network interface provides the following services:

� an abstract and modular interface from the processor core to the physical network layer

� reliable delivery of data

� generation of stalls to the processor core when the network is congested

� idempotent delivery of data

� a cut-through path to memory nodes that bypasses XPORT- and PHY-layer latencies

� in-order delivery of data

� a loopback path for inter-thread data on the same processor node

The network interface assumes that the PHY has no responsibility for packet delivery and no

packet buffering. Hence, the XPORT layer must implement reliable delivery and attempt to always

guarantee space for arriving packets. A discussion of how the topology and routing in the PHY

layer is implemented can be found in section C.3. Readers are recommended to consult that section

if they are unfamiliar with circuit-switched worm-hole routed networks, and unreliable (but fast)

routing.

An overview of the network interface implementation can be found in figure C-5. Data coming

from the processor core first has its source and destination headers appended, and then routed by

cut-through and loopback routers. The datapath at this point routes source, destination and data

information in parallel to reduce latency.

The cut-through and loopback router simply recognizes addresses destined for the local pro-

cessor node or memory, and passes that data directly to its destination without going through the

XPORT or PHY layers. Data through the cut-through and loopback paths is always guaranteed to

be single-word length. If the cut-through or loopback destination is unable to accept data, it must

send a stall signal to the sender, and there must be sufficient buffering in the cut-through and loop-

back router to compensate for the time-of-flight of the stall signal. All data not destined for the
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cut-through or loopback paths is sent on to an outgoing packet buffer.

The outgoing packet buffer is responsible for regulating the flow of data from the processor node

and migration manager going into the XPORT layer. It must be fairly large: big enough to hold a

few maximum length packets. It also must be fairly flexible, since most packets are either going

to be a couple words in size, or a couple hundred words in size. Finally, the packet buffer must

implement the following contract with the migration manager and the processor node: once data

of a given length has been accepted for transfer into the buffer, it must be able to accept all of that

data. If it cannot, it must refuse any data from the sender, and it is the sender’s responsibility to retry

sending the data. In the case of the processor node, the stall will cause the sending thread to retire

to the scheduler list and a retry occurs when the scheduler tries running the stalled thread again. In

the case of the migration manager, the scheduler co-processor is responsible for implementing some

kind of back-off and retry scheme in software. The packet buffer may also optionally implement

packet merging for data going to the same destination. It must always preserve the temporal order

of data after a merge, and it cannot merge atomicEXCHoperations.

Data accepted into the packet buffer is then forwarded to the XPORT layer, but only when there

is space available in the XPORT buffer. The XPORT layer adds the requisite checksum, ECC and

PHY-layer routing headers before storing the data inside the transport buffer. A processor-node

unique sequence number is also added to the message while being stored into the transport buffer in

order to implement reliable, idempotent, and in-order delivery.

The protocol used for reliable idempotent delivery relies on unique sequence numbers and

acknowledge/forget tokens. It is the protocol developed by Jeremy Brown and J.P. Grossman of

the MIT AI Lab with an additional level of numbering to guarantee the in-order delivery of mes-

sages. [GB02] Figure C-6 illustrates the simplified protocol without in-order delivery. Every mes-

sage in the sender is assigned a unique sequence number. This number may be guaranteed to be

unique by simply using a very large (64-bit) counter and incrementing it once for each data packet.

The sender remembers the data packet and the sequence number, even after the packet is sent. Once

the receiver gets the packet, it remembers the sequence number and the sender’s context ID, and

passes the data portion on to the destination within the node. The receiver then returns an ACK

packet to the sender as soon as possible with the sequence number as the payload; when the sender

sees the ACK packet, it knows it can safely forget about the buffered packet; reliable delivery has

occurred. If, however, after some timeout period an ACK is not received, the sender must resend its

data packet. If it is the case that the ACK was not received because the ACK path was blocked or
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corrupted, then a risk of a double-write of data occurs. This is averted, though, because the receiver

keeps track of the the sender’s sequence number; any incoming packet with a non-unique sequence

number from a particular processor node is discarded, and another ACK generated. The FORGET

packet is required by the receiver so it knows when it can retire sequence numbers and stop sending

ACK packets. Thus, whenever a sender receives an ACK packet, it immediately turns around a

FORGET packet to the source of the ACK packet with the sequence number of the ACK packet as

the payload.
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Figure C-6: Idempotence and reliable data delivery protocol in detail for a single transaction. Lines
in gray are “retry” lines that would not happen in an ideal setting.

The basic protocol outlined above does not guarantee the in-order delivery of packets to a des-

tination. Packets can be re-ordered by the fact that any packet in a sequence of packets could fail

to be delivered on the first try. My tweak on the protocol is to include an additional queue ordering

number in each packet. The queue ordering number starts at zero and is incremented each time a

packet is sent for a given sequence number. The receiver’s job is to recreate the original ordering of

the packets using the queue ordering numbers. An additional message, FORGETCONNECTION,

is required to signal when a sequence number can be forgotten. Sequence numbers can only be for-

gotten after sufficient time has passed to guarantee that the last packet sent in the protocol has either

succeeded or failed. This is easy to determine because the network is circuit switched and delivery

times are inherently bounded. A packet’s delivery is assumed to have failed if no acknowledgment

is received after a period of time has passed equal to the round trip time plus acknowledgment
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overhead time.

The network interface is structured to have one dedicated data packet transmit port, one dedi-

cated ACK and FORGET packet transmit port, and two receive ports. This structure helps regulate

the flow of data onto the network, and ensure that ACK and FORGET packets (which are smaller

than data packets and thus able to be sent at a higher rate) have a greater chance of getting into

the network. This structure also helps alleviate port contention at the receivers by limiting the peak

rate of message injection to be strictly lower than the peak rate of message acceptance. Refer to

section C.3 for more details on how the routing headers are structured and the number and types of

wires used to interface to the network.
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Figure C-7: Details of packet formats. Note that in the destination/source cID and queue headers,
it is very important that the processor ID be in the MSB and co-located with the address field,
since implementations may push bits between the address and PID fields to increase the number of
routable processor nodes or to increase the amount of memory per node.

The format of the network packets is documented in figure C-7. The most important information

to glean from this diagram is that ACK and FORGET packets are the shortest packets, and that
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an abbreviated “short data packet” is available for the very common special case that the packet

contains a payload of one word. The short data packet is 20% shorter than a long data packet of

length one because it combines the ECC field and the sequence number into the same word, and

removes the length field entirely. The ECC/checksum field can be shorter for these packets because

there is less data over which to checksum and correct.

C.3 Network Topology and Implementation

The network topology and its specific implementation parameters are free to vary depending upon

the user’s end requirements. The XPORT protocol discussed in section C.2 assumes that the network

is circuit switched,i.e. it has no buffering or reordering, and that it is quite unreliable; contention for

ports and routing resources is indistinguishable from hardware failures from the sender’s standpoint.

This unreliability is not as bad as it sounds; under light loading conditions, connections are rapidly

and reliably established, and connection performance degrades gradually as congestion increases.

With a properly designed transport protocol, however, this phenomenon can be used as feedback

to throttle the message insertion rate. The network is also quite robust in the face of hardware

failures, since it is designed from the ground-up to cope with such scenarios. The ADAM System

Simulator implements a network topology based upon the METRO network, described in great

detail by [DeH93] and by [WC01].

The principal advantage of circuit-switched networks over packet-routed networks is latency

performance and simplicity of implementation. No buffers are required at the routers to handle

port contention: the message is simply dropped, and the sender is responsible for re-sending the

message. This is because the network does not have to guarantee message delivery. Also, with the

correct choice of network topology, routing can happen at wave-propagation speeds, such that the

wire delay, even over short runs, is the dominant latency component of the network.

One of the disadvantages of circuit-switched networks is that the network is very bandwidth-

inefficient if the minimum time required to establish a connection is long compared to the time

required to deliver the message data. This kind of scenario may happen in a room-sized computer

where the velocity of electromagnetic waves in a copper waveguide forces the minimum time to

establish a connection to be several tens or hundreds of processor clock periods long. This is par-

ticularly painful in the case that a connection is blocked by router contention near the destination,

because routing resources were consumed and locked-down throughout the body of the network for
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the length of the connection. The worst-case scenario occurs when several senders are trying to

communicate with a single remote hot-spot on a deep circuit-switched network, causing multiple

messages to route easily through the body of the network, consuming resources, only to get dropped

near the destination. Andr´e DeHon of Caltech suggested that a hybrid buffered packet and circuit-

switched network may be a good solution under these conditions: one may insert packet buffer

stations that store a limited number of packets (and may freely drop excess packets) at intermediate

“checkpoints” along the network. In the hot-spot scenario, messages route easily through most of

the network and are stored at the checkpoint nearest the hot-spot, and only the segment of network

between the hot-spot and the nearest checkpoint suffers degenerative congestion. The distance be-

tween checkpoints and the depth of the checkpoint buffers are parameters that depend heavily upon

the implementation technology, and in particular, the ratio of the information propagation time to

the temporal length of the average message.

Another technique for reducing the cost of circuit-switching, suggested by J.P. Grossman of the

MIT AI Lab, is to use worm-hole routing. One can build a worm-hole routed network using the

same fast router structures and protocols as a circuit switched network, but instead of holding the

circuit up until the receiver tears it down with an acknowledge, the connection is torn up as the tail

of the message is routed. This method of routing requires that separate ACK and FORGET routes

have to be re-established, but this price is relatively small. The reliable delivery and idempotence

protocol outlined in section C.2 can handle blocked ACK and FORGET packets. Also, the data

payload is delivered on the first packet to arrive at the destination, so even if the ACK and FORGET

packets take a while to work their way through the system, the effective delivery latency is still just

the price of a one-way trip.

The recommended network topology for ADAM implementations is a hybrid topology similar

to that suggested in [DeH90]. The topology of an on-chip or local network should be a radix-4

dilation-2 bidelta network as described by [DeH93]. For off-chip or longer-distance networks in

larger systems, some bandwidth thinning is required for scalability. The basic router components

designed for the on-chip networks can be re-used to implement a more scalable fat-tree topology as

described in [DeH90] and in [WC01]. The parameters assumed by the year 2010 implementation

described in section C.2 implies that the off-chip network could run at speeds of 2-4 GHz, double-

edge clocked. Assuming that 92 bits are required to represent one flit, 46 differential pairs could

transmit a full 80-bit word plus ECC, sync and clock every processor cycle. There will probably be

enough pins on a package in the year 2010 to implement dozens of these high speed links per chip.
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Finally, it is recommended that the implementation use a single frequency reference and a

mesochronous (phase-insensitive) timing scheme for the entire machine. This single reference may

have redundancy built into it, or auxiliary resonators distributed throughout the machine, to prevent

a meltdown or power grid failure due to inductive kickback as a result of clock failure. The im-

plementation would require an initial self-calibration phase where receivers determine the optimal

sampling phase, and perhaps even require periodic (on the order of minutes or hours) re-calibrations

where the machine is paused for a microsecond or two to compensate for material property changes

over time and temperature. The principle advantage of using a mesochronous single frequency

source scheme is that one can remove the metastability resolution time from the network timing

budget, and the secondary advantage is that it simplifies the implementation of the physical layer,

as plesiochronous implementations require some complexity to handle the case when the integrated

frequency error causes a cycle to be lost between nodes. The impact of metastability resolution

and synchronization on the latency of a router node should not be underestimated, especially if the

router is operating at near wave-propagation speeds. In the SGI SPIDER router chip used by the

Origin 2000 supercomputers [Gal96], 17.5 ns out of a total 40 ns pin to pin latency is burned in the

synchronizer. The problem with metastability is that there is nothing one can do about it except wait

for the values to settle, and the settling time is an inverse exponential to the magnitude of the dif-

ference between the initial voltage and the fixed-point metastable voltage. A mesochronous system

side-steps this issue by calibrating the sample time at clock boundaries to give the biggest margin

versus the metastable voltage.
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Appendix D

Opcodes

Implementing someone else’s specification is the moral equivalent
of translating fifty VCR user’s manuals from English to Japanese.

—bunnie

D.1 General Notes

RTL descriptions of opcode operations are given in blocking form; i.e., the following lines of code

PC  PC + 1
qc  PC
PC  PC + offset

stores the value of the initialPC + 1 into qc , and the value of the initialPC + 1 + offset

into PC.

Also, note that if noPCoperation is specified, a default operation ofPC  PC + 1 is im-

plied, and that an exception can be thrown as a result of thePC increment if thePCenters into a

protected or invalid code region.

D.2 Lazy Instructions

The following instructions may require multiple cycles to complete executionanddo not stall the

program counter (some instructions will require multiple cycles, but stall the PC until they are
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complete). The most important thing to note is that these instructions in fact do not guarantee how

long it will take to complete. Two instructions started in an overlapping manner may complete out

of order. For example, the code

SPAWNC qn, label1, q0
SPAWNC qn, label2, q0

May result with the capability for thelabel1 thread returned after the capability for thelabel2

thread. If the order of the return values matters, it is recommended that a blocking intermediate

queue move operation be employed:

SPAWNC qn, label1, q0
MOVE q0, q1
SPAWNC qn, label2, q0
MOVE q0, q1

Execution will block each time on theMOVE q0, q1 instruction untilq0 has a value.

This behavior of a multicycle instruction is referred to as “lazy”. The following instructions are

lazy:

SPAWN
SPAWNC
ALLOCATE
ALLOCATEC

D.3 Instruction Summary

Integer Arithmetic Instructions:
ADD qa, qb, qc
SUB qa, qb, qc
MUL qa, qb, qc
DIV qa, qb, qc
ADDC qa, n, qc
SUBC qa, n, qc
MULC qa, n, qc
DIVC qa, n, qc

Logical Operator Instructions:
AND qa, qb, qc
OR qa, qb, qc
XOR qa, qb, qc
NOT qa, qc
ANDC qa, n, qc
ORC qa, n, qc
XORC qa, n, qc
SHL qa, qb, qc
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SHR qa, qb, qc
SRA qa, qb, qc
SHLC qa, n, qc
SHRC qa, n, qc
SRAC qa, n, qc

Integer Comparison Instructions:
SEQ qa, qb, qc
SNE qa, qb, qc
SLT qa, qb, qc
SGT qa, qb, qc
SLE qa, qb, qc
SGE qa, qb, qc
SIC qa, qc
SEQC qa, n, qc
SNEC qa, n, qc
SLTC qa, n, qc
SGTC qa, n, qc
SLEC qa, n, qc
SGEC qa, n, qc

Floating point to Integer Conversions:
TOINT qa, qc
TOREAL qa, qc

Floating Point Arithmetic Instructions:
FADD qa, qb, qc
FSUB qa, qb, qc
FMUL qa, qb, qc
FDIV qa, qb, qc
FADDC qa, n, qc
FSUBC qa, n, qc
FMULC qa, n, qc
FDIVC qa, n, qc

Floating Point Comparison Instructions:
FSEQ qa, qb, qc
FSNE qa, qb, qc
FSLT qa, qb, qc
FSGT qa, qb, qc
FSLE qa, qb, qc
FSGE qa, qb, qc
FSEQC qa, n, qc
FSNEC qa, n, qc
FSLTC qa, n, qc
FSGTC qa, n, qc
FSLEC qa, n, qc
FSGEC qa, n, qc

Branch and Jump Instructions:
BR label
BRL label, qc
BRZ qa, label
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BRNZ qa, label
BRNE qa, label
BREL qa
JMP qa

Internal Data Manipulation Instructions:
MOVE qa, qc
MOVECF n, qc
MOVECL n, qc
MOVECI n, qc
MOVECS n, qc
MOVECC n, qc
PACKN qa, qb, qc, n
PACKH qa, qb, qc
PACKL qa, qb, qc
PACKI qa, qb, qc
UNPACK qa, qb, qc
UNPACKC qa, n, qc
EXTAG qa, qc
SETTAG qa, qb, qc

Queue Management Instructions:
FLUSHQ qc
SPAWN qa, qb, qc
SPAWNC qa, label, qc
SPAWNL qa, qb, qc
MAPQ qa, qb, qc
MAPQC qa, qb, qc
MAPSQ qa, qb
MAPDROP n
UNMAPQ n
CONSUME qa
SEMPTY qa, qc
EEQ qc

Thread and Context Management Instructions:
PROCID qc
LDCODE qa, qc
OSIZE n

Memory Instructions:
PTRSIZE qa, qc
ALLOCATE qa, qb, qc
ALLOCATEC qa, n, qc
MML qa, qb
MMS qa, qb
EXCH qa, qb, qc
PARCEL qa, qb, qc
MSYNC

Mode and Exception Handling Instructions:
GETSTAT qc
SETSTAT qa
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GETEX qc
SETEX qa
THROW

Miscellaneous Instructions:
RANDOM qc
HINT t,hint
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ADD

ADD qa, qb, qc

Description:

ADD(addition) takes the sum ofqa andqb and returns the result inqc . qa andqb must be of the

same integer type (word, packed int, packed short, or packed char), in which case the result inqc

will have the same type as its predecessors. Also,qa may be a capability andqb may be a word, in

which case the result will be a capability. Ifqa or qb have incompatible types,qc will be tagged

as invalid and a type exception raised. Ifqa is a capability and the add operation with word inqb

is not permitted or results in an invalid capability, an operation exception is raised and the result in

qc is an invalid capability.

If qa is non-copyable capability, then a successfulADDoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy and an exception is thrown.

The ADDoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
qc  qa + qb

elif( type(qa,qb) == packed int )
qc.a  qa.a + qb.a
qc.b  qa.b + qb.b

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a + qb.a
qc.b  qa.b + qb.b
qc.c  qa.c + qb.c
qc.d  qa.d + qb.d

elif( (type(qa) == capability) && (type(qb) == word) )
temp  qa + SEXT(qb & ADDRMASK)

if( temp is valid )
qc  temp

if( qa == non-copyable )

forceDequeue( qa ) // flag error if copy bit is set on qa
else

throw operation exception

qc  invalid
else

throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.
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Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.
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ADDC

ADDC qa, n, qc

Description:

ADDC(addition with constant) takes the sum ofqa andn and returns the result inqc . qa can be

of an integer type (word, packed int, packed short, or packed char), in which case the result inqc

will have the same type as its predecessors. In the case of packed types, the same constant is added

to each sub-integer. Also,qa may be a capability, in which case the result will be a capability. If

qa is a capability and the add operation with word inqb is not permitted or results in an invalid

capability, an operation exception is raised and the result inqc is an invalid capability.

If qa is non-copyable capability, then a successfulADDCoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy and an exception is thrown.

TheADDCoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
qc  qa + SEXT(n)

elif( type(qa) == packed int )
qc.a  qa.a + n
qc.b  qa.b + n

elif( type(qa) == (packed char or packed short) )
qc.a  qa.a + n
qc.b  qa.b + n
qc.c  qa.c + n
qc.d  qa.d + n

elif( type(qa) == capability )
temp  qa + SEXT(n & ADDRMASK)
if( temp is valid )

qc  temp
if( qa == non-copyable )

forceDequeue( qa ) // flag error if copy bit is set on qa
else

throw operation exception
qc  invalid

else
throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:

None.
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Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.
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SUB

SUB qa, qb, qc

Description:

SUB(subtraction) takes the difference ofqa andqb and returns the result inqc . qa andqb must

be of the same integer type (word, packed int, packed short, or packed char), in which case the result

in qc will have the same type as its predecessors. Also,qa may be a capability andqb may be a

word, in which case the result will be a capability. Ifqa or qb have incompatible types,qc will

be tagged as invalid and a type exception raised. Ifqa is a capability and the add operation with

word in qb is not permitted or results in an invalid capability, an operation exception is raised and

the result inqc is an invalid capability.

If qa is non-copyable capability, then a successfulSUBoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy, and an exception is thrown.

The SUBoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
qc  qa - qb

elif( type(qa,qb) == packed int )
qc.a  qa.a - qb.a
qc.b  qa.b - qb.b

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a - qb.a
qc.b  qa.b - qb.b
qc.c  qa.c - qb.c
qc.d  qa.d - qb.d

elif( (type(qa) == capability) && (type(qb) == word) )
temp  qa - SEXT(qb & ADDRMASK)
if( temp is valid )

qc  temp
if( qa == non-copyable )

forceDequeue( qa )
else

throw operation exception
qc  invalid

else
throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.
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Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.
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SUBC

SUBC qa, n, qc

Description:

SUBC(subtraction with constant) takes the difference ofqa andn and returns the result inqc . qa

can be of an integer type (word, packed int, packed short, or packed char), in which case the result

in qc will have the same type as its predecessors. In the case of packed types, the same constant is

subtracted from each sub-integer. Also,qa may be a capability, in which case the result will be a

capability. Ifqa is a capability and the add operation with word inqb is not permitted or results in

an invalid capability, an operation exception is raised and the result inqc is an invalid capability.

If qa is non-copyable capability, then a successfulSUBCoperation dequeuesqa even if the copy/clobber

modifier forqa is set to copy and an exception is thrown.

TheSUBCoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
qc  qa - SEXT(n)

elif( type(qa) == packed int )
qc.a  qa.a - n
qc.b  qa.b - n

elif( type(qa) == (packed char or packed short) )
qc.a  qa.a - n
qc.b  qa.b - n
qc.c  qa.c - n
qc.d  qa.d - n

elif( type(qa) == capability )
temp  qa - SEXT(n & ADDRMASK)
if( temp is valid )

qc  temp
if( qa == non-copyable )

forceDequeue( qa ) // flag error if copy bit is set on qa
else

throw operation exception
qc  invalid

else
throw type exception

Exceptions:

Type exception, operation exception, and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.
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MUL

MUL qa, qb, qc

Description:

MUL(multiplication) takes the product ofqa and qb and returns the lowest bits of the result in

qc . qa andqb must be of the same integer type (word, packed int, packed short, or packed char),

in which case the result inqc will have the same type as its predecessors. Ifqa or qb have

incompatible types,qc will be tagged as invalid and a type exception raised.

The MULoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
qc  (qa * qb) & 0xFFFFFFFFFFFFFFFF

elif( type(qa,qb) == packed int )
qc.a  (qa.a * qb.a) & 0xFFFFFFFF
qc.b  (qa.b * qb.b) & 0xFFFFFFFF

elif( type(qa,qb) == (packed char or packed short) )
qc.a  (qa.a * qb.a) & 0xFFFF
qc.b  (qa.b * qb.b) & 0xFFFF
qc.c  (qa.c * qb.c) & 0xFFFF
qc.d  (qa.d * qb.d) & 0xFFFF

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

163



MULC

MULC qa, n, qc

Description:

MULC(multiplication with constant) takes the product ofqa andn and returns the lowest bits of

the result inqc . qa can be of an integer type (word, packed int, packed short, or packed char), in

which case the result inqc will have the same type as its predecessors. In the case of packed types,

the same constant is multiplied to each sub-integer.

TheMULCoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
qc  (qa * n) & 0xFFFFFFFFFFFFFFFF

elif( type(qa) == packed int )
qc.a  (qa.a * n) & 0xFFFFFFFF
qc.b  (qa.b * n) & 0xFFFFFFFF

elif( type(qa) == (packed char or packed short) )
qc.a  (qa.a * n) & 0xFFFF
qc.b  (qa.b * n) & 0xFFFF
qc.c  (qa.c * n) & 0xFFFF
qc.d  (qa.d * n) & 0xFFFF

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.
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DIV

DIV qa, qb, qc

Description:

DIV (integer divide) takes the division ofqa and qb and returns the result inqc . Non-integer

results are truncated.qa andqb must be of the same integer type (word, packed int, packed short,

or packed char), in which case the result inqc will have the same type as its predecessors. Ifqa or

qb have incompatible types,qc will be tagged as invalid and a type exception raised. If the divisor

qb is zero, a divide by zero exception is thrown andqc is marked as invalid, with the specific

packed component ofqc that is erroneous marked as overflowed.

The DIV operation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
if(qb == 0)

throw divide-by-zero exception
type(qc)  invalid, overflow.a

else
qc  qa / qb

elif( type(qa,qb) == packed int )
if(qb.a == 0)

throw divide-by-zero exception

type(qc.a)  invalid, overflow.a
else

qc.a  qa.a / qb.a
if(qb.b == 0)

throw divide-by-zero exception
type(qc.b)  invalid, overflow.b

else
qc.b  qa.b / qb.b

elif( type(qa,qb) == (packed char or packed short) )
if(qb.a == 0)

throw divide-by-zero exception
type(qc.a)  invalid, overflow.a

else
qc.a  qa.a / qb.a

if(qb.b == 0)

throw divide-by-zero exception
type(qc.b)  invalid, overflow.b

else
qc.b  qa.b / qb.b

if(qb.c == 0)
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throw divide-by-zero exception

type(qc.c)  invalid, overflow.c
else

qc.c  qa.c / qb.c

if(qb.d == 0)

throw divide-by-zero exception

type(qc.d)  invalid, overflow.d
else

qc.d  qa.d / qb.d
else

throw type exception

Exceptions:

Type exception, and divide-by-zero exception.

Qualifiers:

None.

Notes:

None.
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DIVC

DIVC qa, n, qc

Description:

DIVC (division with constant) takes the division ofqa andn and returns the result inqc . qa can

be of an integer type (word, packed int, packed short, or packed char), in which case the result in

qc will have the same type as its predecessors. In the case of packed types, the same constant is

multiplied to each sub-integer. If the divisorn is zero, a divide by zero exception is thrown and

qc is marked as invalid, with the specific packed component ofqc that is erroneous marked as

overflowed.

TheDIVC operation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
if(n == 0)

throw divide-by-zero exception
type(qc)  invalid, overflow.a

else
qc  qa / SEXT(n)

elif( type(qa) == packed int )
if(n == 0)

throw divide-by-zero exception
type(qc.a)  invalid, overflow.a
type(qc.b)  invalid, overflow.b

else
qc.a  qa.a / n
qc.b  qa.b / n

elif( type(qa) == (packed char or packed short) )
if(n == 0)

throw divide-by-zero exception
type(qc.a)  invalid, overflow.a
type(qc.b)  invalid, overflow.b
type(qc.c)  invalid, overflow.c
type(qc.d)  invalid, overflow.d

else
qc.a  qa.a / n
qc.b  qa.b / n
qc.c  qa.c / n
qc.d  qa.d / n

else
throw type exception
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Exceptions:

Type exception, divide-by-zero exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.
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AND,OR,XOR

AND,OR,XOR qa, qb, qc

Description:

AND, OR, andXORperform bitwise operations onqa andqb and returns the result inqc . qa and

qb must be of the same integer type (word, packed int, packed short, or packed char), in which case

the result inqc will have the same type as its predecessors. Ifqa or qb have incompatible types,

qc will be tagged as invalid and a type exception raised.

TheAND,OR,XORoperation is only executed if bothqa andqb operands are available and there

is no backpressure onqc . Otherwise, the instruction stalls.

Operation:

OP is one of bitwise AND, OR, XOR
if( type(qa,qb) == word )

qc  qa OP qb

elif( type(qa,qb) == packed int )
qc.a  qa.a OP qb.a
qc.b  qa.b OP qb.b

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a OP qb.a
qc.b  qa.b OP qb.b
qc.c  qa.c OP qb.c
qc.d  qa.d OP qb.d

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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NOT

NOT qa, qc

Description:

NOTperforms a bitwise inversion onqa and returns the result inqc . qa must be of an integer type

(word, packed int, packed short, or packed char), in which case the result inqc will have the same

type as its predecessors. Ifqa has an incompatible type,qc will be tagged as invalid and a type

exception raised.

TheNOToperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
qc  �qa

elif( type(qa) == packed int )
qc.a  �qa.a
qc.b  �qa.b

elif( type(qa,qb) == (packed char or packed short) )
qc.a  �a.a
qc.b  �qa.b
qc.c  �qa.c
qc.d  �qa.d

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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ANDC,ORC,XORC

ANDC,ORC,XORC qa, n, qc

Description:

ANDC, ORC, andXORCperform a bitwise operation onqa and a sign-extendedn and returns the

result inqc . qa can be of an integer type (word, packed int, packed short, or packed char), in which

case the result inqc will have the same type as its predecessors. In the case of packed types, the

same constant is operated on each sub-integer.

TheANDC,ORC,XORCoperation is only executed ifqa is available and there is no backpressure

on qc . Otherwise, the instruction stalls.

Operation:

OP is one of bitwise AND, OR, XOR
if( type(qa) == word )

qc  qa OP SEXT(n)

elif( type(qa) == packed int )
qc.a  qa.a OP n
qc.b  qa.b OP n

elif( type(qa) == (packed char or packed short) )
qc.a  qa.a OP n
qc.b  qa.b OP n
qc.c  qa.c OP n
qc.d  qa.d OP n

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SHL

SHL qa, qb, qc

Description:

SHL(shift-left) performs a logical left-shift on the contents ofqa by the number of digits specified

in qb , and returns the result inqc . Bits shifted off the left are thrown away, and zeroes are shifted

in from the right.qa andqb must be of the same integer type (word, packed int, packed short, or

packed char), in which case the result inqc will have the same type as its predecessor. Ifqa or qb

have incompatible types,qc will be tagged as invalid and a type exception raised.

The SHL operation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
qc  qa � (qb & 0x3F)

elif( type(qa,qb) == packed int )
qc.a  qa.a � (qb.a & 0x1F)
qc.b  qa.b � (qb.b & 0x1F)

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a � (qb.a & 0xF)
qc.b  qa.b � (qb.b & 0xF)
qc.c  qa.c � (qb.c & 0xF)
qc.d  qa.d � (qb.d & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SHLC

SHLC qa, n, qc

Description:

SHLC(shift left by constant) performs a logical left-shift on the contents ofqa by the number of

digits specified inn, and returns the result inqc . Bits shifted off the left are thrown away, and

zeroes are shifted in from the right.qa must be of an integer type (word, packed int, packed short,

or packed char), in which case the result inqc will have the same type as its predecessor. In the

case thatqa is a packed type, each subword will be shifted left by the same amount. Ifqa has an

incompatible type,qc will be tagged as invalid and a type exception raised.

TheSHLCoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
qc  qa � (n & 0x3F)

elif( type(qa) == packed int )
qc.a  qa.a � (n & 0x1F)
qc.b  qa.b � (n & 0x1F)

elif( type(qa) == (packed char or packed short) )
qc.a  qa.a � (n & 0xF)
qc.b  qa.b � (n & 0xF)
qc.c  qa.c � (n & 0xF)
qc.d  qa.d � (n & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SHR

SHR qa, qb, qc

Description:

SHR(logical shift right)performs a logical right-shift on the contents ofqa by the number of digits

specified inqb , and returns the result inqc . Bits shifted off the right are thrown away, and zeroes

are shifted in from the left.qa andqb must be of the same integer type (word, packed int, packed

short, or packed char), in which case the result inqc will have the same type as its predecessor. If

qa or qb have incompatible types,qc will be tagged as invalid and a type exception raised.

The SHRoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
qc  qa � (qb & 0x3F)

elif( type(qa,qb) == packed int )
qc.a  qa.a � (qb.a & 0x1F)
qc.b  qa.b � (qb.b & 0x1F)

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a � (qb.a & 0xF)
qc.b  qa.b � (qb.b & 0xF)
qc.c  qa.c � (qb.c & 0xF)
qc.d  qa.d � (qb.d & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SHRC

SHRC qa, n, qc

Description:

SHRC(logical shift right by constant) performs a logical right-shift on the contents ofqa by the

number of digits specified inn, and returns the result inqc . Bits shifted off the right are thrown

away, and zeroes are shifted in from the left.qa must be of an integer type (word, packed int, packed

short, or packed char), in which case the result inqc will have the same type as its predecessor. In

the case thatqa is a packed type, each subword will be shifted left by the same amount. Ifqa has

an incompatible type,qc will be tagged as invalid and a type exception raised.

TheSHRCoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
qc  qa � (n & 0x3F)

elif( type(qa) == packed int )
qc.a  qa.a � (n & 0x1F)
qc.b  qa.b � (n & 0x1F)

elif( type(qa) == (packed char or packed short) )
qc.a  qa.a � (n & 0xF)
qc.b  qa.b � (n & 0xF)
qc.c  qa.c � (n & 0xF)
qc.d  qa.d � (n & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SRA

SRA qa, qb, qc

Description:

SRA(arithmetic shift right) performs an arithmetic (sign-preserving) right-shift on the contents of

qa by the number of digits specified inqb , and returns the result inqc . Bits shifted off the right

are thrown away, and the value of the sign bit is shifted in from the left (zero if the number being

shifted is positive, one if the number being shifted is negative).qa andqb must be of the same

integer type (word, packed int, packed short, or packed char), in which case the result inqc will

have the same type as its predecessor. Ifqa or qb have incompatible types,qc will be tagged as

invalid and a type exception raised.

The SRAoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
qc  qa SRA (qb & 0x3F)

elif( type(qa,qb) == packed int )
qc.a  qa.a SRA (qb.a & 0x1F)
qc.b  qa.b SRA (qb.b & 0x1F)

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a SRA (qb.a & 0xF)
qc.b  qa.b SRA (qb.b & 0xF)
qc.c  qa.c SRA (qb.c & 0xF)
qc.d  qa.d SRA (qb.d & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SRAC

SRAC qa, n, qc

Description:

SRAC(arithmetic shift right by constant) performs an arithmetic right-shift on the contents ofqa by

the number of digits specified inn, and returns the result inqc . Bits shifted off the right are thrown

away, and the value of the sign bit is shifted in from the left (zero if the number being shifted is

positive, one if the number being shifted is negative).qa must be of an integer type (word, packed

int, packed short, or packed char), in which case the result inqc will have the same type as its

predecessor. In the case thatqa is a packed type, each subword will be shifted left by the same

amount. Ifqa has an incompatible type,qc will be tagged as invalid and a type exception raised.

TheSRACoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
qc  qa SRA (n & 0x3F)

elif( type(qa) == packed int )
qc.a  qa.a SRA (n & 0x1F)
qc.b  qa.b SRA (n & 0x1F)

elif( type(qa) == (packed char or packed short) )
qc.a  qa.a SRA (n & 0xF)
qc.b  qa.b SRA (n & 0xF)
qc.c  qa.c SRA (n & 0xF)
qc.d  qa.d SRA (n & 0xF)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SEQ,SLT,SLE

SEQ,SLT,SLE qa, qb, qc

Description:

SEQ, SLT, andSLE perform magnitude comparisons on its arguments and produce a binary result.

SEQtest if qa andqb are equal;SLT tests ifqa is less thanqb ; andSLE tests ifqa is less than or

equal toqb˙qa andqb must be of the same integer type (word, packed int, packed short, or packed

char), in which case the result inqc will have the same type as its predecessor. Ifqa or qb have

incompatible types,qc will be tagged as invalid and a type exception raised.

The Sxx operation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

OP is one of arithmetic =, <, �:
if( type(qa,qb) == word )

qc  qa OP qb ? 1 : 0

elif( type(qa,qb) == packed int )
qc.a  qa.a OP qb.a ? 1 : 0
qc.b  qa.b OP qb.b ? 1 : 0

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a OP qb.a ? 1 : 0
qc.b  qa.b OP qb.b ? 1 : 0
qc.c  qa.c OP qb.c ? 1 : 0
qc.d  qa.d OP qb.d ? 1 : 0

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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SIC

SIC qa, qc

Description:

SIC tests ifqa is a capability. If it is, a word type 1 is put intoqc . Otherwise, a word type 0 is put

into qc .

TheSIC operation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == capability )
qc  1

else
qc  0

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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SEQC,SLTC,SLEC

SEQC,SLTC,SLEC qa, qb, qc

Description:

SEQC, SLTC, andSLECperform magnitude comparisons on its arguments and produce a binary

result.SEQCtest ifqa andn are equal;SLTCtests ifqa is less thann; andSLECtests ifqa is less

than or equal ton. qa must be of an integer type (word, packed int, packed short, or packed char),

in which case the result inqc will have the same type as its predecessor. Ifqa has an incompatible

type,qc will be tagged as invalid and a type exception raised.

TheSxxC operation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

OP is one of arithmetic =, <, �:
if( type(qa,qb) == word )

qc  qa OP n ? 1 : 0
elif( type(qa,qb) == packed int )

qc.a  qa.a OP n ? 1 : 0
qc.b  qa.b OP n ? 1 : 0

elif( type(qa,qb) == (packed char or packed short) )
qc.a  qa.a OP n ? 1 : 0
qc.b  qa.b OP n ? 1 : 0
qc.c  qa.c OP n ? 1 : 0
qc.d  qa.d OP n ? 1 : 0

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.

180



TOINT

TOINT qa, qc

Description:

TOINT (floating point to integer convert) converts the floating-point value inqa to an integer stored

in qc . Conversion is done using the truncation or “round to zero” method, so that the number 9.6

is converted to 9, and the number -2.8 is converted to -2. Overflow in either sign extreme results in

qc having the maximum sized integer of the appropriate sign and the overflow bit being set inqc ’s

type field.qa must be of the floating point type, and the result inqc is of type word. Ifqa has an

incompatible type,qc will be tagged as invalid and a type exception raised.

TheTOINT operation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

if( type(qa) == floating-point )
qc  (word) qa
type(qc)  word

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field. Attempting to convert +1

will result in the largest positive representable integer inqc and set the overflow bit ofqc . Likewise,

converting -1 will result in the most negative representable integer inqc and set the overflow bit

of qc .

Attempting to convert NaN’s will result inqc having an invalid type.

181



TOREAL

TOREAL qa, qc

Description:

TOREAL(integer to floating point convert) converts the integer value inqa to the nearest repre-

sentable floating-point value stored inqc . qa must be of the word type, and the result inqc is

of the floating point type. Ifqa has an incompatible type,qc will be tagged as invalid and a type

exception raised.

The TOREALoperation is only executed ifqa is available and there is no backpressure onqc .

Otherwise, the instruction stalls.

Operation:

if( type(qa) == word )

qc  (floating-point) qa

type(qc)  floating-point
else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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FADD

FADD qa, qb, qc

Description:

FADD(floating-point addition) takes the sum ofqa andqb and returns the result inqc . qa andqb

must be of the floating-point type, and the resultqc is of the floating point type.

The FADDoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == floating-point )
qc  qa + qb

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.
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FADDC

FADDC qa, n, qc

Description:

FADDC(floating-point addition with constant) takes the sum ofqa andn and returns the result in

qc . qa must be of the floating-point type, and the resultqc is of the floating point type.

TheFADDCoperation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

if( type(qa) == floating-point )
qc  qa + n

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.
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FSUB

FSUB qa, qb, qc

Description:

FSUB(floating-point subtraction) takes the difference ofqa andqb and returns the result inqc .

qa andqb must be of the floating-point type, and the resultqc is of the floating point type.

The FSUBoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == floating-point )
qc  qa - qb

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.
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FSUBC

FSUBC qa, n, qc

Description:

FSUBC(floating-point addition with constant) takes the difference ofqa andn and returns the result

in qc . qa must be of the floating-point type, and the resultqc is of the floating point type.

TheFSUBCoperation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

if( type(qa) == floating-point )
qc  qa - n

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.
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FMUL

FMUL qa, qb, qc

Description:

FMUL(floating-point multiply) takes the product ofqa andqb and returns the result inqc . qa and

qb must be of the floating-point type, and the resultqc is of the floating point type.

The FMULoperation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == floating-point )
qc  qa * qb

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.
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FMULC

FMULC qa, n, qc

Description:

FMULC(floating-point multiply with constant) takes the product ofqa andn and returns the result

in qc . qa must be of the floating-point type, and the resultqc is of the floating point type.

TheFMULCoperation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

if( type(qa) == floating-point )
qc  qa + n

else
throw type exception

Exceptions:

Type exception and overflow exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.
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FDIV

FDIV qa, qb, qc

Description:

FDIV (floating-point division) dividesqa by qb and returns the quotient inqc . qa andqb must

be of the floating-point type, and the resultqc is of the floating point type. Ifqb is zero, a divide-

by-zero exception is thrown and the resultqc is tagged as invalid.

The FDIV operation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == floating-point )
qc  qa / qb

else
throw type exception

Exceptions:

Type exception, overflow exception, and divide-by-zero exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If any operand is a NaN, the result will be NaN.
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FDIVC

FDIVC qa, n, qc

Description:

FDIVC (floating-point divide by constant) dividesqa by n and returns the result inqc . qa must be

of the floating-point type, and the resultqc is of the floating point type. Ifn is zero, a divide-by-zero

exception is thrown and the resultqc is tagged as invalid.

TheFDIVC operation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

if( type(qa) == floating-point )
qc  qa / n

else
throw type exception

Exceptions:

Type exception, overflow exception, and divide-by-zero exception.

Qualifiers:

None.

Notes:

Overflowed results also set the respective overflow bit inqc ’s type field.

If qa is a NaN, the result will be NaN.
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FSEQ,FSLT,FSLE

FSEQ,FSLT,FSLE qa, qb, qc

Description:

FSEQ, FSLT, andFSLE perform magnitude comparisons on its arguments and produce a binary

integer result.FSEQtest if qa andqb are equal;FSLT tests ifqa is less thanqb ; andFSLE tests

if qa is less than or equal toqb˙qa andqb must be of the floating-point type. The resultqc is of

type word. Ifqa or qb have incompatible types,qc will be tagged as invalid and a type exception

raised.

The FSxx operation is only executed if bothqa and qb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

OP is one of arithmetic =, <, �:
if( type(qa,qb) == floating-point )

qc  qa OP qb ? 1 : 0
type(qc)  word

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

If any of the operands are NaNs, the result is tagged as invalid.
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FSEQC,FSLTC,FSLEC

FSEQC,FSLTC,FSLECqa, qb, qc

Description:

FSEQC, FSLTC, andFSLECperform magnitude comparisons on its arguments and produce a bi-

nary result.FSEQCtest if qa andn are equal;FSLTCtests ifqa is less thann; andFSLECtests if

qa is less than or equal ton. qa must be of the floating-point type, and the result inqc is of type

word. If qa has an incompatible type,qc will be tagged as invalid and a type exception raised.

TheFSxxC operation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

OP is one of arithmetic =, <, �:
if( type(qa,qb) == floating-point )

qc  qa OP n ? 1 : 0
type(qc)  word

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

If qa is a NaN, the result is tagged as invalid.
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BR

BR offset

Description:

BR(unconditional branch) adds the number specified in theoffset field to the incremented pro-

gram counter. Execution immediately begins at the newPCvalue; there are no branch delay slots.

Operation:

PC  PC + 1
PC  PC + offset

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:

None.

Notes:

None.
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BRL

BRL offset, qc

Description:

BRL (unconditional branch with link) adds the number specified in theoffset field to the incre-

mented program counter. Execution immediately begins at the newPCvalue; there are no branch

delay slots. The incremented program counter offset relative to the start of code (be it method,

object, or absolute-referenced) is stored inqc as a word data type; execution stalls ifqc is full and

applying backpressure.

TheBRL operation is only executed if there is no backpressure onqc . Otherwise, the instruction

stalls.

Operation:

PC  PC + 1
qc  PC
PC  PC + offset

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:

None.

Notes:

None.
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BRZ

BRZ qa, offset, hint

Description:

BRZ (branch if zero) adds the number specified in theoffset field to the incremented program

counter if the value inqa is zero; otherwise, the program counter is just incremented to the next

instruction.qa must be of the word type. Execution immediately begins at the newPCvalue; there

are no branch delay slots.

TheBRZoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )

if( qa == 0 )
PC  PC + 1 + offset

else
PC  PC + 1

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown. A type exception

is thrown if the type ofqa is not word.

Qualifiers:

None.

Notes:

Thehint field is an implementation-specific 8-bit number that serves as a branch prediction hint.

The semantics ofhint are such that an incorrect branch hint still leads to correct but slower exe-

cution. The actual value ofhint is allowed to have cache-incoherent mutation during run-time as

the dynamic hardware branch-predictor sees fit.
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BRNZ

BRNZ qa, offset, hint

Description:

BRNZ(branch if not zero) adds the number specified in theoffset field to the incremented pro-

gram counter if the value inqa is not zero; otherwise, the program counter is just incremented to

the next instruction.qa must be of the word type. Execution immediately begins at the newPC

value; there are no branch delay slots.

TheBRNZoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )

if( qa != 0 )
PC  PC + 1 + offset

else
PC  PC + 1

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown. A type exception

is thrown if the type ofqa is not word.

Qualifiers:

None.

Notes:

Thehint field is an implementation-specific 8-bit number that serves as a branch prediction hint.

The semantics ofhint are such that an incorrect branch hint still leads to correct but slower exe-

cution. The actual value ofhint is allowed to have cache-incoherent mutation during run-time as

the dynamic hardware branch-predictor sees fit.
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BRNE

BRNE qa, offset

Description:

BRNE(branch if not empty) adds the number specified in theoffset field to the incremented

program counter ifqa is not empty; otherwise, the program counter is just incremented to the next

instruction. The data inqa is not affected by this instruction. Execution immediately begins at the

newPCvalue; there are no branch delay slots.

Operation:

if( qa != empty )
PC  PC + 1 + offset

else
PC  PC + 1

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:

The qualifier is ignored by this instruction;qa is never dequeued.

Notes:

None.
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BREL

BREL qa

Description:

BREL(unconditional relative branch) adds the number inqa to the incremented program counter.

qa must be of the word type. Execution immediately begins at the newPC value; there are no

branch delay slots.

TheBRELoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
PC  PC + 1 + qa

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown. A type exception

is thrown if the type ofqa is not word.

Qualifiers:

None.

Notes:

None.
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JMP

JMP qa, hint

Description:

JMP(unconditional jump) sets the value inPCto the value inqa . Execution immediately begins at

the newPCvalue; there are no branch delay slots.qa must be of type word.

TheJMPoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

if( type(qa) == word )
PC  qa

Exceptions:

If the destination of thePCis in a protected or invalid page, an exception is thrown.

Qualifiers:

None.

Notes:

Thehint field is an implementation-specific 48-bit number that serves as a jump prediction des-

tination hint. The semantics ofhint are such that an incorrect jump hint still leads to correct but

slower execution. The actual value ofhint is allowed to have cache-incoherent mutation during

run-time as the dynamic hardware jump-predictor sees fit.
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MOVE

MOVE qa, qc

Description:

MOVE(move) takes the value inqa and puts it intoqc . The exact state of the queues after theMOVE

instruction depends on the @ (copy/clobber) modifiers applied to the queue specifiers.

TheMOVEoperation is only executed ifqa is available and there is no backpressure onqc . Other-

wise, the instruction stalls.

Operation:

qc  qa

Exceptions:

An operation exception is thrown if a copy operator is applied to data inqa that is tagged non-

copyable. The result inqc is tagged as invalid, and the original value remains untouched inqa .

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.
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MOVECF

MOVECF n, qc

Description:

MOVECF(move floating point constant) takes the 32-bit floating-point constant specified inn, con-

verts it to the nearest ADAM 64-bit floating point number, and puts the properly typed result into

qc . The exact state ofqc after theMOVECFinstruction depends on the @ (copy/clobber) modifier

applied to the queue specifier.

TheMOVECFoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc  (floating-point) n

type(qc)  floating-point

Exceptions:

None.

Qualifiers:

None.

Notes:

Because of the conversion from a 32-bit opcode-stored representation to a 64-bit standard ADAM

floating point representation, the result inqc may exhibit some small roundoff error when compared

to the desired constant.

Exact semantics vary according to the use of the @ modifier.
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MOVECL

MOVECL n, qc

Description:

MOVECL(move long integer constant) takes the 32-bit constant specified inn, sign-extends it to an

ADAM native 64-bit word, and puts the properly typed result intoqc . The exact state ofqc after

theMOVECLinstruction depends on the @ (copy/clobber) modifier applied to the queue specifier.

TheMOVECLoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc  SEXT(n)
type(qc)  word

Exceptions:

None.

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.
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MOVECI

MOVECI n, qc

Description:

MOVECI(move packed integer constant) takes the 32-bit constant specified inn, places it in the

lower bits of a packed integer, sets the upper bits of the packed integer to zero, and puts the prop-

erly typed result intoqc . The exact state ofqc after theMOVECIinstruction depends on the @

(copy/clobber) modifier applied to the queue specifier.

TheMOVECIoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc.a  0
qc.b  n
type(qc)  packed integer

Exceptions:

None.

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.
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MOVECS

MOVECS n, qc

Description:

MOVECS(move packed short constant) takes the dual 16-bit packed short constant specified inn,

places it in the lower bits of a packed short, sets the upper bits of the packed short to zero, and puts

the properly typed result intoqc . The exact state ofqc after theMOVECSinstruction depends on

the @ (copy/clobber) modifier applied to the queue specifier.

TheMOVECSoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc.a  0
qc.b  0
qc.c  n[31:16]
qc.d  n[15:0]
type(qc)  packed short

Exceptions:

None.

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.
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MOVECC

MOVECC n, qc

Description:

MOVECC(move packed unicode character constant) takes the dual 16-bit packed unicode character

constant specified inn, places it in the lower bits of a packed char, sets the upper bits of the packed

char to zero, and puts the properly typed result intoqc . The exact state ofqc after theMOVECC

instruction depends on the @ (copy/clobber) modifier applied to the queue specifier.

TheMOVECCoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc.a  0
qc.b  0
qc.c  n[31:16]
qc.d  n[15:0]
type(qc)  packed character

Exceptions:

None.

Qualifiers:

None.

Notes:

Exact semantics vary according to the use of the @ modifier.
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PACKN

PACKN qa, qb, qc, n

Description:

PACKN(Pack Anything) takes the data inqa and inserts it at a position specified byn into the data

from qb , and places the result intoqc . qa must be of type word, andqb must be of a packed

integer type. The result inqc has the same type asqb .

The PACKNoperation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa) == word )
if( type(qb) == packed int )

if( n == 0 )
qc.a  qa & 0xFFFFFFFF
qc.b  qb.b

else
qc.a  qb.a
qc.b  qa & 0xFFFFFFFF

elif( type(qb) == packed short or packed char )
if( n == 0 )

qc.a  qa & 0xFFFF
qc.b  qb.b
qc.c  qb.c
qc.d  qb.d

elif( n == 1 )
qc.a  qb.a
qc.b  qa & 0xFFFF
qc.c  qb.c
qc.d  qb.d

elif( n == 2 )
qc.a  qb.a
qc.b  qb.b
qc.c  qa & 0xFFFF
qc.d  qb.d

else
qc.a  qb.a
qc.b  qb.b
qc.c  qb.c
qc.d  qa & 0xFFFF

else
throw type exception

else
throw type exception
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Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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PACKH

PACKH qa, qb, qc

Description:

PACKH(Pack High Half of Packed Short or Char) takes packed integer data inqa , masks the data

and inserts it into the high half ofqb , and places the result intoqc . qb must be of type packed short

or packed char. The result inqc has the same type asqb .

The PACKHoperation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == packed int && type(qb) == packed short or packed char)
qc.a  qa.a & 0xFFFF
qc.b  qa.b & 0xFFFF
qc.c  qb.c
qc.d  qb.d

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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PACKL

PACKL qa, qb, qc

Description:

PACKL(Pack Low Half of Packed Short or Char) takes packed integer data inqa , masks the data

and inserts it into the low half ofqb , and places the result intoqc . qb must be of type packed short

or packed char. The result inqc has the same type asqb .

The PACKLoperation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == packed int && type(qb) == packed short or packed char)
qc.a  qb.a
qc.b  qb.b
qc.c  qa.a & 0xFFFF
qc.d  qa.b & 0xFFFF

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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PACKI qa, qb, qc

Description:

PACKI (Pack to Packed Integer) takes word data inqa andqb , masks the data and packs it into a

packed integer stored inqc .

The PACKI operation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if( type(qa,qb) == word )
qc.a  qa & 0xFFFFFFFF
qc.b  qb & 0xFFFFFFFF

type(qc)  packed integer
else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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UNPACK

UNPACK qa, qb, qc

Description:

UNPACK(Unpack) takes a packed integer typeqa and extracts and sign-extends the data at location

qb into qc . The resultqc is of type word.

TheUNPACKoperation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if(type(qb) == word)

if(type(qa) == packed int)

if(qb == 0)
qc  SEXT(qa.a)

else
qc  SEXT(qa.b)

elif(type(qa) == packed short or packed char)

if(qb == 0)
qc  SEXT(qa.a)

elif(qb == 1)
qc  SEXT(qa.b)

elif(qb == 2)
qc  SEXT(qa.c)

else
qc  SEXT(qa.d)

else
throw type exception

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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UNPACKC

UNPACKC qa, n, qc

Description:

UNPACKC(Unpack with constant) takes a packed integer typeqa and extracts and sign-extends the

data at locationn into qc . The resultqc is of type word.

The UNPACKCoperation is only executed ifqa is available and there is no backpressure onqc .

Otherwise, the instruction stalls.

Operation:

if(type(qa) == packed int)

if(n == 0)
qc  SEXT(qa.a)

else
qc  SEXT(qa.b)

elif(type(qa) == packed short or packed char)

if(n == 0)
qc  SEXT(qa.a)

elif(n == 1)
qc  SEXT(qa.b)

elif(n == 2)
qc  SEXT(qa.c)

else
qc  SEXT(qa.d)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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FLUSHQ

FLUSHQ qc

Description:

FLUSHQ(Flush Queue) is a special-format instruction, whereqc is interpreted as an immediate

constant.FLUSHQdiscards all values currently in the queue specified by the immediate constant

qc . The function ofFLUSHQupon a queue which has mappings to other contexts, be it head or tail

mappings, is UNPREDICTABLE. Ifqc is already empty, nothing happens and execution continues.

Operation:

qc  empty

Exceptions:

Throws a mapping exception ifqc has any mappings.

Qualifiers:

None.

Notes:

None.
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PROCID

PROCID qc

Description:

PROCID(Get Process ID) places the value of the current context ID intoqc . qc is a capability

with the owner bit set. In addition, the read and write bits are set. If the context ID is to be passed

to another thread, care must be taken to set the permissions properly.

ThePROCIDoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc  context ID

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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PTRSIZE

PTRSIZE qa, qc

Description:

PTRSIZE (Get Pointer Size) computes the size of the region of data pointed to by the capability

in qa and places the size, in words, inqc . The PTRSIZE operation is valid on any capability,

regardless of its permissions. The result inqc is of the word type.

The PTRSIZE operation is only executed ifqa is available and there is no backpressure onqc .

Otherwise, the instruction stalls.

Operation:

if( type(qa) == capability )

qc  sizeof(qa) in words
type(qc)  word

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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CONSUME

CONSUME qa

Description:

CONSUME(Consume Data) reads exactly one piece of data out ofqa and discards it. Ifqa is

initially empty,CONSUMEblocks.

Operation:

while( qa is empty )
stall

if( no @ operator on qa )
dequeue head of qa

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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SEMPTY

SEMPTY qa, qc

Description:

SEMPTY(Set if Empty) is a special format instruction, whereqa is interpreted as an immediate

constant.SEMPTYtests to see if the queue specified by the immediate constantqa is empty, and if

it is, it places an integer 1 intoqc . Otherwise, a 0 is written intoqc . The type of the resultqc is

word.

Operation:

if((qa & 0x7F) is empty)
qc  1

else
qc  0

type(qc)  word

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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EEQ

EEQ qa

Description:

EEQ(forcE Empty Queue) is a special format instruction, whereqa is interpreted as an immediate

constant.EEQtests to see if the queue specified by the immediate constantqa is empty, and if it is,

it increments the PC; if not, the PC remains constant and a yielding stall is reported to the scheduler.

Operation:

if((qa & 0x7F) is empty)
pc  pc + 1

else
pc  pc

Exceptions:

None.

Qualifiers:

None.

Notes:

This instruction complicates the implementation of the processor core. An alternative would be to

use SEMPTY and a BRZ instruction to create a programmatic loop to check for the emptiness of a

queue. However, for the purposes of backward compatibility with an older ISA, it is included in the

documentation.
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RANDOM

RANDOM qc

Description:

RANDOM(Generate Random Number) places a cryptographically secure random integer of type

word into qc . RANDOMmay be implemented as an external hardware device to the processor.

Because 64 bits of entropy must be collected for eachRANDOMinstruction, it is possible to request

random numbers faster than the processor or device is capable of generating them. In this case, the

operation blocks until a random number becomes available. In order to smooth out demand patterns,

the number generating device may elect to queue up several pre-generated numbers.

TheRANDOMoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc  random number between �263 and 263 � 1

type(qc)  word

Exceptions:

None.

Qualifiers:

None.

Notes:

The exact implementation of theRANDOMfunction should be disclosed in a public fashion before

it can be trusted. More information on cryptographically secure random numbers can be found

in Annex D.6 “Random number generation” of the IEEE 1363-2000 standard and in RFC1750,

“Randomness Recommendations for Security”. A user desiring to verify the randomness properties

of theRANDOMinstruction may wish to refer to Ueli M. Maurer’s “A Universal Statistical Test for

Random Bit Generators”,Institute of Theoretical Computer Science, ETH Zürich, 1992, Journal of

Cryptology, Vol. 5, No. 2.
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GETSTAT

GETSTAT qc

Description:

GETSTAT(Get Status Register) copies the contents of the status register intoqc . There are some

portions of the status register that are implementation-specific.qc is of type word.

TheGETSTAToperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

qc  status register
type(qc)  word

Exceptions:

None.

Qualifiers:

None.

Notes:

Please refer to the implementation notes and the architecture specification for the meaning of the

status register bits.
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SETSTAT

SETSTAT qa

Description:

SETSTAT(Set Status Register) copies the contents ofqa into the modifiable portions of the status

register. There are some portions of the status register that are implementation-specific.qa must be

of type word.

TheSETSTAToperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

if(type(qa) == word)

status register  qa
else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

Please refer to the implementation notes and the architecture specification for the meaning of the

status register bits. Some of the bits of the status register are read-only and are unaffected by

SETSTAT.
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GETEX

GETEX qc

Description:

GETEX(Get Exception Context ID) places the current exception handler’s context ID intoqc . The

permissions on the exception handler ID are set to opaque and owner.

TheGETEXoperation is only executed if there is no backpressure onqc . Otherwise, the instruction

stalls.

Operation:

qc  Exception Register

type(qc)  capability

permissions(qc)  opaque, owner

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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SETEX

SETEX qa

Description:

SETEX(Set Exception Context ID) sets the current context’s exception handler ID to be the capa-

bility in qa . The operation blocks ifqa is applying backpressure.

Operation:

if(type(qa) == capability)

Exception Register  qa
else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

None.
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THROW

THROW

Description:

THROW(Throw Soft Exception) causes the current context to be set to the exception handler context

and for the PC to jump to the exception handler’s server code. In addition, the current context ID is

saved into the Exceptioned Context ID register. The user may layer additional conventions on top

of the basicTHROWsemantics; for example, the user may require that q127 contain a soft exception

ID.

Operation:

PC  PC + 1
Exceptioned Context ID  context ID

context ID  exception handler ID

PC  exception handler server code start

Exceptions:

None.

Qualifiers:

None.

Notes:

Note that there is no requirement for a savedPCbecause thePCof the exceptioned context is not

overwritten by the exception handler PC: the context ID is set to the exception handler before the

PC is modified.

This is a multi-cycle, variable execution duration instruction.
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EXTAG

EXTAG qa, qc

Description:

EXTAG(Extract Tag) extracts the tag bits out ofqa and places them intoqc . The tag bits are placed

in the MSB’s ofqc and zero-padded to the right. The tag region of a piece of data includes the top

16 bits, whereas the tag region for a capability includes the top 45 bits. The type of the result inqc

is word.

TheEXTAGoperation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

if(type(qa) == capability)

qc  fqa[79:55],39’b0 g

else qc  fqa[79:64],48’b0 g

type(qc)  word

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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SETTAG

SETTAG qa, qb, qc

Description:

SETTAG(Set Tag) sets the tag of the data inqb to the value of the LSB’s ofqa , and places the

result intoqc . This is a very powerful operator, as it can force a literal binary transmutation of data

types and change several important attributes about a piece of data. If the value of the bits inqa

corresponds to a capability, the type ofqb must also be a capability, and the owner bit forqb must

be set.qa must be of type word.

TheSETTAGoperation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == word)

if(type(qb) == capability)

if(!owner(qb))
throw operation exception

else
tags(qb)  qa[63:39]

else
if(qa[63] == 1)

throw operation exception
else
tags(qb)  qa[63:48]

else
throw type exception

Exceptions:

Operation exception, type exception.

Qualifiers:

None.

Notes:

None.
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ALLOCATE

ALLOCATE qa, qb, qc

Description:

ALLOCATE(Allocate Capability) creates a capabilityqc of the size nearest to the number of words

specified inqb . The address of the capability and the increment-only bit are set to restrict the

accessible portion of the capability to exactly the size specified inqb . qb must be of type word.

If the allocation fails,qc is returned as an invalid capability, and an out of memory exception is

thrown.qa contains an allocation metric that guides where the allocated memory should be placed

in the system.qa must be of type packed char or a capability. Ifqa is a capability, the system

attempts to allocate the new capability close to the capability inqa .

TheALLOCATEoperation is only executed ifqa is available and there is no backpressure onqc .

Otherwise, the instruction stalls.

Operation:

if(type(qb) == word && (type(qa) == packed char || (type(qa) == capability)))

if(qa words available)

qc  capability of size qa bytes
else

qc  invalid capability

throw out of memory exception
else

throw type exception

Exceptions:

Out of memory exception, type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete. This instruction is a “lazy”

instruction.

The format of the allocation metric is implementation dependant. The current implementation

scheme calls for the packed char to contain the following sixteen-bit char values, from MSB to

LSB: ignored, ignored, expected communication frequency, desired latency.
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ALLOCATEC

ALLOCATEC qa, n, qc

Description:

ALLOCATEC(Allocate Capability, Size in Constant Field) creates a capabilityqc of the size nearest

to the number of words specified inn. The address of the capability and the increment-only bit

are set to restrict the accessible portion of the capability to exactly the size specified inn. If the

allocation fails,qc is returned as an invalid capability, and an out of memory exception is thrown.

qa contains an allocation metric that guides where the allocated memory should be placed in the

system. qa must be of type packed char or of type capability. Ifqa is a capability, the system

attempts to allocate the new capability close to the capability inqa .

The ALLOCATECoperation is only executed if there is no backpressure onqc . Otherwise, the

instruction stalls.

Operation:

if(type(qa) == packed char || type(qa) == capability)

if(n words available)
qc  capability of size n bytes

else
qc  invalid capability

throw out of memory exception
else

throw type exception

Exceptions:

Out of memory exception, type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete. This instruction is a “lazy”

instruction.

The format of the allocation metric is implementation dependant. The current implementation

scheme calls for the packed char to contain the following sixteen-bit char values, from MSB to

LSB: ignored, ignored, expected communication frequency, desired latency.
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MML

MML qa, qb

Description:

MML(Map Memory Load) maps the queue number specified inqa to a load address queue, and

maps the return data of the load into the queue number specified inqb . qa andqb must be of type

word.

The memory subsystem expects that the first address entered into a memory address queue be the

access capability, and that subsequent entries to the load address queue be offsets on the initial

capability. Enqueueing the initialization capability does not cause the memory subsystem to return

a load value. If a capability is sent to the memory subsystem following the initialization capability,

the new capability subsumes the old one; again, no load value is returned in response to this load

capability being sent.

This operation stalls until bothqa andqb contain a value.

Operation:

if(type(qa,qb) == word)
MAP (qa & 0x7F) to memory load address queue
MAP memory load return data queue to (qb & 0x7F)

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete the mapping, but thePC is

allowed to increment in one cycle. This does not lead to incorrect operation unless the user unmaps

the memory mapping instruction and then immediately re-maps the memory mapping. Users should

avoid unmapping and remapping memory maps using the same queues within the same context.

Note that it is perfectly safe to re-initialize an existing memory mapping by sending a new capability

to the address queue.

When unmapping a memory mapped queue pair, the user is responsible for unmaping both the

address and the data queue. There is nothing fundamentally incorrect about unmapping one queue

only; however, it may lead to confusion if the queue mapping is re-used, and the garbage collector

will not de-allocate memory that has even a partial mapping to its capability.
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MMS

MMS qa, qb

Description:

MMS(Map Memory Store) maps the queue number specified inqa to a store address queue, and

maps the queue number specified inqb to a store data queue.qa andqb must be of type word.

Data and addresses may be enqueued at differing times and rates, but the invariant is that the store

blocks until both queues have at least one element in them, and that data and address pairs are

strictly correlated by their relative order in the queues.

The memory subsystem expects that the first address entered into a memory address queue be the

access capability; this first access isnot matched with a data element in the store data queue. Sub-

sequent addresses are then interpreted as offsets to the initial access capability and are paired with

data values in the store data queue.

This operation stalls until bothqa andqb contain a value.

Operation:

if(type(qa,qb) == word)
MAP (qa & 0x7F) to memory store address queue
MAP (qb & 0x7F) to memory store data queue

else
throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete the mapping, but thePC is

allowed to increment in one cycle. This does not lead to incorrect operation unless the user unmaps

the memory mapping instruction and then immediately re-maps the memory mapping. Users should

avoid unmapping and remapping memory maps using the same queues within the same context.

Note that it is perfectly safe to re-initialize an existing memory mapping by sending a new capability

to the address queue.

When unmapping a memory mapped queue pair, the user is responsible for unmaping both the

address and the data queue. There is nothing fundamentally incorrect about unmapping one queue

only; however, it may lead to confusion if the queue mapping is re-used, and the garbage collector

will not de-allocate memory that has even a partial mapping to its capability.
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EXCH

EXCH qa, qb, qc

Description:

EXCH(Declare Exchange Tuple) marks the queues numbers specified inqa , qb andqc as a memory

exchange tuple.qa is set to be the address queue,qb is set to be the data in queue, andqc is set

to be the data out queue. All ofqa , qb , andqc are interpreted to be immediate constants. The

exchange tuple must be initialized by moving a capability intoqa prior to moving an address offset

into qa .

Once the tuple has been initialized with an address value, the next piece of data moved intoqb is

exchanged atomically with the contents of memory at the specified address, and the contents of the

memory location prior to the exchange is placed inqc .

This operation is guaranteed by the memory system to be atomic at the memory side; however, no

other relative timings are guaranteed.

TheEXCHmapping remains in effect until it is undone with anUNMAPQinstruction. The user must

unmap all three mappings.

Operation:

MAP qa to atomic memory address queue

MAP qb to atomic memory incoming data queue

MAP qc to atomic memory return data queue

Exceptions:

Type exception and exchange exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.
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SPAWN

SPAWN qa, qb, qc

Description:

SPAWN(Spawn) starts a new thread by allocating space for the thread, creating an entry in the thread

scheduler for the thread withPCset to the value inqb , and returning the thread ID (which is also a

capability to thread’s data) inqc . The permissions of the thread ID capability are set to opaque and

not owner.qa contains a spawning metric that is used to guide the run-time as to where the thread

should be spawned. Ifqa is a capability, the system attempts to allocate the new thread close to the

capability inqa .

qa must be of type packed char or type word, andqb must be of type word.

TheSPAWNoperation is only executed ifqa is available and there is no backpressure onqc . Oth-

erwise, the instruction stalls.

Operation:

if(type(qb) == word && (type(qa) == packed char || (type(qa) == capability)))

qc  new thread capability

if(qc == invalid)

throw out of memory exception
else

create thread scheduler entry (new thread ID, PC = qa)
else

throw type exception

Exceptions:

Type exception, Out of memory exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete. This is a “lazy” instruction.

The format of the spawning metric is implementation dependant. The current implementation

scheme calls for the packed char to contain the following sixteen-bit char values, from MSB to

LSB: expected children, memory requirement, computation requirement, desired latency.
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SPAWNL

SPAWNL qa, qb, qc

Description:

SPAWNL(Load Code and Spawn) starts a new thread by allocating space for the thread, loading its

code specified inqb into code space, and creating an entry in the thread scheduler for the thread

with PCset to the value inqa , and returning the thread ID (which is also a capability to thread’s

data) inqc . The permissions of the thread ID capability are set to opaque and not owner. The size

of the space to be allocated for the thread is encoded in anOSIZE opcode that should be the first

instruction of the new thread.

qa must be of type word, andqb must be a capability to a character array that describes a universal

locator for the code resource.

TheSPAWNLoperation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == word && type(qb) == capability)

load code specified by qb into code space

qc  capability of size indicated in OSIZE opcode at address in qa

if(qc == invalid)

throw out of memory exception
else

create thread scheduler entry (new thread ID, PC = qa)
else

throw type exception

Exceptions:

Type exception, Out of memory exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.
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SPAWNC

SPAWNC qa, n, qc

Description:

SPAWNC(Spawn with PC-constant offset) starts a new thread by allocating space for the thread,

creating an entry in the thread scheduler for the thread withPC set to the value ofPC + 1 + n,

and returning the thread ID (which is also a capability to thread’s data) inqc . The permissions of

the thread ID capability are set to opaque and not owner. The size of the space to be allocated for

the thread is encoded in anOSIZE opcode that should be the first instruction of the new thread.

qa contains a spawning metric that is used to guide the run-time as to where the thread should

be spawned. Ifqa is a capability, the system attempts to allocate the new capability close to the

capability inqa .

TheSPAWNCoperation is only executed if there is no backpressure onqc . Otherwise, the instruc-

tion stalls.

Operation:

if(type(qa) == packed char || type(qa) == capability)

qc  capability of size in OSIZE opcode at (n + PC + 1)

if(qc == invalid)

throw out of memory exception
else

create thread scheduler entry (new thread ID, P C = n + PC + 1)
else

throw type exception

Exceptions:

Out of memory exception and type exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete. This is a “lazy” instruction.

The format of the spawning metric is implementation dependant. The current implementation

scheme calls for the packed char to contain the following sixteen-bit char values, from MSB to

LSB: expected children, memory requirement, computation requirement, desired latency.
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MAPQ qa, qb, qc

Description:

MAPQ(Map Queue) is a special-format instruction.qa is actually interpreted as an immediate

constant: it specifies the queue number in the current context that is to be mapped.MAPQdoes not

actually read or modify the contents ofqa in any way. The copy/clobber modifier has no effect on

the value ofqa in this case.qb specifies the queue number to read for the queue number of the

destination mapping, andqc specifies the queue number to read for the destination context ID.

TheMAPQoperation is only executed if bothqb andqc operands are available.

Operation:

if(type(qb) == word && type(qc) == capability)

map queue ‘‘qa’’.tail in current context to

queue ((qb & 0x7F) � 7).head in context qc
else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

The odd format of this instruction is an artifact of backward compatibility with an earlier version

of the instruction set. This instruction may be represented inside the hardware implementation in a

more typical fashion and require the assembler to do a simple format translation. This instruction

may take multiple cycles to complete.
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MAPQC

MAPQC qa, qb, qc

Description:

MAPQC(Map Queue with Destination as Constant) is a special-format instruction.qa andqb are

actually interpreted as immediate constants: they specify the queue number in the current context

and the destination queue number, respectively, that is to be mapped.MAPQCdoes not actually read

or modify the contents ofqa or qb in any way. The copy/clobber modifier has no effect on the

value ofqa andqb in this case.qc specifies the queue number to read for the destination context

ID.

TheMAPQCoperation is only executed if theqc operand is available.

Operation:

if(type(qc) == capability)

map queue ‘‘qa’’.tail in current context to

queue ‘‘qb’’.head in context qc
else

throw type exception

Exceptions:

Type exception.

Qualifiers:

None.

Notes:

The odd format of this instruction is an artifact of backward compatibility with an earlier version

of the instruction set. This instruction may be represented inside the hardware implementation in a

more typical fashion and require the assembler to do a simple format translation. This instruction

may take multiple cycles to complete.
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MAPSQ qa, qb

Description:

MAPSQ(Map Queue Source) is a special-format instruction.qa andqb are actually intepreted as

immediate constants.MAPSQcreates a mapping such that every element enqueuedby the network

interfaceinto the queue specified in the immediate constantqa also enqueues the context ID of the

data’s source into the queue specified by the immediate constantqb . The arrival of data from the

network interface in the queue specified byqa is guaranteed to be simultaneous with the arrival of

the context ID in the queue specified byqb . The resulting type of the IDs inqb are capability, with

the opaque bit set and the owner bit cleared.

Operation:

map incoming data source ID of queue (qa & 0x7F) to (qb & 0x7F)

Exceptions:

None.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.

Note that data arriving inqa via local operations do not causeqb to have the source enqueued;

thus, it is not recommended to shareqa as both a target for local and remote operations.
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MAPDROP

MAPDROP qa

Description:

MAPDROP(Set Mapping to Drop Mode) is a special-format instruction whereqa is interpreted as

an immediate constant.MAPDROPsets the mode of the mapping of the queue number specified by

the immediate constantqa to “drop” mode. In this mode, backpressure on the queue causes data

to be dropped instead of stalling the context. This is particularly useful when implementing pure

streaming operators on real-time datatypes such as video or audio.

Operation:

set mode of queue (qa & 0x7F) to drop mode

Exceptions:

None.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.
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UNMAPQ

UNMAPQ qa

Description:

UNMAPQ(Unmap A Queue) is a special format instruction, in thatqa is interpreted as an immediate

constant.UNMAPQresets the mapping of the queue specified by the immediate constantqa to the

default (current context ID). Care should be taken to guarantee that the specified queue is empty be-

fore issuing this instruction, otherwise left-over data that may be in the queue when this instruction

retires will never be delivered to its destination.

Operation:

set the mapping of queue (qa & 0x7F) to the current context ID

Exceptions:

None.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.

When unmapping a memory mapped queue pair, the user is responsible for unmaping both the

address and the data queue. There is nothing fundamentally incorrect about unmapping one queue

only; however, it may lead to confusion if the queue mapping is re-used, and the garbage collector

will not de-allocate memory that has even a partial mapping to its capability.
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PARCEL

PARCEL qa, qb, qc

Description:

PARCEL(Parcel out a Capability) takes a capability inqa and attempts to create a sub-capability

with the address and tags described inqb . The result is placed inqc . qa must be a capability,qb

is a word type, and the resultqc is a capability. The format of the sub-capability address and tag

specifier is 15 bits of tags followed by a 1 bit increment-only field, followed by a 35 bit address

field. The unused bits to the left are ignored.

35 bit address, word aligned

primary data 64 bits

15 bits base/
bounds

inc-only

Figure D-1:qb format for thePARCELinstruction

If the capability described byqb is outside the bounds of the given capability inqa , an operation

exception is thrown and the result inqc is invalid.

ThePARCELoperation is only executed if bothqa andqb operands are available and there is no

backpressure onqc . Otherwise, the instruction stalls.

Operation:

if(type(qa) == capability && type(qb) == word)

qc  sub-capability of qa described by qb
else

throw type exception

Exceptions:

Type exception and operation exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.
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MSYNC

MSYNC

Description:

MSYNC(Memory Synchronize) causes the current thread to stall until all of the current thread’s

pending memory operations have completed.

Operation:

if(current thread has pending memory operations)
PC  PC
signal structural stall to thread scheduler

else
PC  PC + 1

Exceptions:

None.

Qualifiers:

None.

Notes:

This instruction will take a variable number of cycles to complete.
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LDCODE

LDCODE qa, qc

Description:

LDCODE(Dynamically Load Code) takes a capability inqa which contains a character array that

names a code object and its path, attempts to load it into code memory, and returns the absolute

PCaddress of the code as a word inqc . A failure to complete this operation causes a code load

exception to be thrown andqc to be invalid.

(Need to determine if the return should be aPCvalue, or if it should be a context ID to an object

server that was started...)

The LDCODEoperation is only executed ifqa is available and there is no backpressure onqc .

Otherwise, the instruction stalls.

Operation:

if(type(qa) == capability)

if(qa.permissions == read, not opaque, valid)

load code described by character array in qa

qc  PC of code entry point

if(tags(qc) == invalid)

throw code load exception
else

throw operation exception
else

throw type exception

Exceptions:

Type exception, operation exception, and code load exception.

Qualifiers:

None.

Notes:

This instruction may take a variable number of cycles to complete.
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OSIZE

OSIZE n

Description:

OSIZE (Object Size Directive) is a compiler directive that uses the “hint” opcode format to inform

ADAM how large a region needs to be allocated for a particular thread object. The size of the region

to allocate in words is indicated inn. This opcode may be located anywhere, but it only has meaning

when it is in the entry point instruction sequence for an object’s initializer code. When executed,

this instruction does nothing to the machine state except increment thePC.

Operation:

PC = PC + 1

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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HINT

HINT t,hint

Description:

HINT (Compiler Hint) is a hint from the compiler or programmer to the ADAM runtime system.

A HINT instruction has no effect on the ADAM machine state except for incrementing thePC;

however, it may have a profound impact upon the OS and/or management coprocessor.

The type of hint is encoded in thet field, and the actual value of the hint is encoded in thehint

field. The valid hint types are TBD, but they fall into two broad categories: machine specific and

machine independent. Machine specific hints include data placement directives. Machine inde-

pendent hints include thread swap hints, prefetch directives, and migration hints. A hint with an

unrecognized hint type is ignored.

An incorrect hint never leads to incorrect program results; an incorrect just leads to poor perfor-

mance.

Operation:

PC = PC + 1

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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NOP

NOP

Description:

NOP(No Operation) ANOPinstruction has no effect on the ADAM machine state except for incre-

menting thePC.

Operation:

PC = PC + 1

Exceptions:

None.

Qualifiers:

None.

Notes:

None.
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