Archive for the ‘name that ware’ Category

Winner, Name that Ware November 2021

Wednesday, December 29th, 2021

The Ware for November 2021 is the controller PCB from a late ’80s vintage “Caroling Christmas Bells” set. As described by the contributor: “Basically it’s a string of twelve electromagnetically-actuated brass bells that play christmas songs. These seem to have been quite popular at the time as there’s hundreds of sets for sale on eBay right now. It’s pretty cool to see a novelty product like this implemented using discrete logic chips.”

Thanks again to jackw01 for contributing this seasonal ware!

I haven’t seen the ware myself, but I think Adam Robinson’s description is close enough to me to declare it a winner. Congrats, an email me for your prize!

Name that Ware, November 2021

Monday, November 29th, 2021

The Ware for November 2021 is shown below.

This is another ware from jackw01, and I thought it was fitting for the season (that’s a hint, yes). The posting is a bit early this month because, good news: Precursor production is finally moving ahead! … and so, I may not have sufficient connectivity later this month to post at the usual time.

Winner, Name that Ware October 2021

Monday, November 29th, 2021

The Ware for October 2021 is a TFT liquid crystal display (with any luck, the image I uploaded & added to the entry was accepted by the Wikimedia editors). Congrats to Joe for guessing it first, email me for your prize! The ware itself was a pretty easy guess, but I was inspired to share it because the quality of the photography really spoke to me. The first thought that came to my head when I saw it was, “this should be in the encyclopedia entry for liquid crystal displays”. So, with jackw01‘s permission, I’ve tried to make it happen!

Name that Ware, October 2021

Sunday, October 31st, 2021

The Ware for October 2021 is shown below:

This one should be much easier to guess than last month’s ware; it’s strategically cropped to add a tiny bit of challenge to it. I’ll add some more views of the ware once we’ve got a correct answer.

I was really struck by the quality of the photography of this ware. jackw01 submitted a series of wares (this one included), which I’ll be sharing over the coming months. I have a lot to learn about photography, and I thought it might be of general interest to hear his answer on how this ware was photographed:

[The ware] was shot with a Fujifilm X-T30 using a 40-year-old Canon FD mount 50mm prime lens with a set of 10+16mm macro extension tubes. If you’re unfamiliar, extension tubes are basically a way of achieving macro photography without having a dedicated macro lens. They decrease the minimum focusing distance and increase the magnification of a lens according to the ratio between the length of the extension tube and the focal length of the lens, producing 1:1 magnification when the extension tube length equals the focal length. When using both the 10 and 16mm extension tubes together with the 18-55mm lens, my usable field of view is anywhere from 25-50mm wide depending on the focal length and focus distance with the subject ~0-20mm away from the lens, and with the 50mm prime, the field of view is 30-45mm wide with the subject 70-90mm away from the lens. When using extension tubes, I would highly recommend using manual focus, even though most extension tubes have the electrical connections to support autofocus – the autofocus algorithms on most cameras are just not tuned to work with extension tubes and often won’t focus at all or won’t produce as sharp of an image.

Thanks again to jackw01 for sharing this ware, and for sharing your know-how on photographing them!

Update Nov 5: the ware has been guessed as much as it can be (there is no expectation to guess the specific panel) so I thought I’d share these other images of the ware!

I think one of them might be be a great addition to the entries on TFTs or LCDs on Wikipedia.

I mentioned it to jackw01, and he said he’d be OK with sharing the photos using a Public Domain license and having them added — I’ll give that a try when I get a spare moment, if someone doesn’t get to it before I do!

Winner, Name that Ware September 2021

Sunday, October 31st, 2021

Wow! The ware for September 2021 was a real stumper. To be honest, when Marcan showed me the wares, I had similar instincts to most of those who entered guesses — I was entirely thrown off by the spendy choice of components combined with the huge array of multimedia connectors. Before seeing this ware, I never associated “karaoke” with “expensive electronics”; well, maybe this is a datapoint on how lucrative a business karaoke must be.

TL;DR: The Ware is a Joysound F1, and the winner is Thorkell, who finally managed to piece together the puzzle the day before the contest was scheduled to end. Calvin was actually the first to guess the correct genre of the machine, but Thorkell came as close as possible given the provided images to correctly identifying the make and model (not enough info was in the photos to reveal if it was the f1 or the fR model). Congrats, email me for your well-earned prize!

Marcan, who you should definitely follow if you have any interest in Linux, reverse engineering, and/or the M1 from Apple (he will be live-streaming an Asahi Linux bring-up on Nov 1!), also kindly provided this very detailed write-up on the ware:

Marcan’s Insights on the Joysound f1

This is a Joysound f1 (codename “Ken”), one of the more popular karaoke machines used in shops across Japan. It was released in 2012. You’re likely to have used one if you’ve been around more than once or twice. There are, to my knowledge, no previous teardowns of these machines on the internet, so I was intrigued by how they worked. I picked one up in an auction, and I will say I was not expecting what I saw when I tore it apart!

These machines are “networked karaoke” and periodically call home to update the song database (and require an ongoing subscription to work), but they are designed to work on anything from FTTH to periodic dial-up connections, so they need to have all the data locally. To that end, there’s a big 3TB hard disk with (almost) the entire song database (it is subsetted differently depending on your network speed, e.g. you won’t get many background videos on dial-up, and songs published as user submissions are always streamed on-demand and available only on broadband configurations). The HDD also contains firmware, updates, and anything else that needs pushing out to machines. As of the August update they seem to be using 2.5TB of the storage capacity, so it’s pretty tight already!

The architecture is bizarre. The Tegra 2 SoM is the main processor of the system, running Linux4Tegra (Ubuntu 10.10 ARM32) with good old Xorg; it is in charge of the main karaoke playback, networking, updates, remote control service, etc. Interestingly, it can also peer with another machine to serve its data over the network, which is useful when an HDD dies, to avoid having to take the machine out of service entirely. It boots off of a ramdisk loaded off of the HDD, and quite impressively, the entire rootfs is less than 150MB uncompressed. Control is usually via external touchscreen or tablet remotes, that connect typically via an external Wi-Fi access point and network, but can also use the internal Wi-Fi card in ad-hoc mode.

The entire audio subsystem is offloaded to the Roland board, which has a full MIDI synthesizer (for the karaoke; most songs are MIDI, although AAC is also supported and decoded by the Tegra before being pushed to the Roland as PCM) and DSP engine for Mic effects (reverb, voice changer, anti-howling, etc). In fact, it even has a fancy system for using an external microphone to measure the acoustic characteristics of the room and automatically compute a DSP profile. On top of the core MIDI patches, the Tegra also uploads an extra set of very high quality bass and drum samples to the Roland via the USB connection. Talk about high-end MIDI!

All the I/O is for things like the mics, external background music/video sources, instrument inputs (e.g. you can add a guitar preamp frontend), and auxiliary outputs. This is the first machine in its range to have HDMI, so it only has a single output; a newer revision called F1v added an HDMI input and dual HDMI outputs, to allow for HDMI idle/background video feeds.

The front touch panel is driven by the Marvell Armada SoC and is its own system running Android Eclair. It gets an SD feed of the main system’s video to display when idle, and it can composite its menus on top. It is otherwise a completely standalone system, with its own song metadata database updated from the main unit, etc. It communicates with the main system chiefly via USB networking and some of the same APIs that external Wi-Fi remotes would use. This is the first machine from Joysound to have an embedded touchscreen interface, and basically what they did was take the existing JR-300 “Mary” stand-alone touchscreen remote and embed it into the main unit. They call it “pamary” (Panel Mary, presumably). Amusingly, the ad-hoc Wi-Fi dongle is connected to the Armada, not the main SoC, so external remotes connected in this way end up routing through it into the main SoC. No idea why they did it like that.

The next generation (Joysound MAX “Zeus”) is basically an iteration of the same architecture. They ditched the Tegra 2 and replaced it with a Renesas R-Car-H2 (keeping with the automotive SoC theme…) and the distro is now Yocto-based, but the front panel SoC remains separate. The Roland board is much reduced, presumably using newer more integrated technology. The HDD is now 4TB. There is also a newer MAX2 version, which I don’t have, but I don’t expect it to be much different either.

Thanks for playing this Name That Ware! Hope you enjoyed it!