Archive for the ‘Social’ Category

Maker Pro: Soylent Supply Chain

Thursday, December 18th, 2014

A few editors have approached me about writing a book on manufacturing, but that’s a bit like asking an architect to take a photo of a building that’s still on the drawing board. The story is still unfolding; I feel as if I’m still fumbling in the dark trying to find my glasses. So, when Maker Media approached me to write a chapter for their upcoming “Maker Pro” book, I thought perhaps this was a good opportunity to make a small and manageable contribution.

The Maker Pro book is a compendium of vignettes written by 17 Makers, and you can pre-order the Maker Pro book at Amazon now.

Maker Media was kind enough to accommodate my request to license my contribution using CC BY-SA-3.0. As a result, I can share my chapter with you here. I titled it the “Soylent Supply Chain” and it’s about the importance of people and relationships when making physical goods.


Soylent Supply Chain

The convenience of modern retail and ecommerce belies the complexity of supply chains. With a few swipes on a tablet, consumers can purchase almost any household item and have it delivered the next day, without facing another human. Slick marketing videos of robots picking and packing components and CNCs milling components with robotic precision create the impression that everything behind the retail front is also just as easy as a few search queries, or a few well-worded emails. This notion is reinforced for engineers who primarily work in the domain of code; system engineers can download and build their universe from source–the FreeBSD system even implements a command known as ‘make buildworld’, which does exactly that.

The fiction of a highly automated world moving and manipulating atoms into products is pervasive. When introducing hardware startups to supply chains in practice, almost all of them remark on how much manual labor goes into supply chains. Only the very highest volume products and select portions of the supply chain are well-automated, a reality which causes many to ask me, “Can’t we do something to relieve all these laborers from such menial duty?” As menial as these duties may seem, in reality, the simplest tasks for humans are incredibly challenging for a robot. Any child can dig into a mixed box of toys and pick out a red 2×1 Lego brick, but to date, no robot exists that can perform this task as quickly or as flexibly as a human. For example, the KIVA Systems mobile-robotic fulfillment system for warehouse automation still requires humans to pick items out of self-moving shelves, and FANUC pick/pack/pal robots can deal with arbitrarily oriented goods, but only when they are homogeneous and laid out flat. The challenge of reaching into a box of random parts and producing the correct one, while being programmed via a simple voice command, is a topic of cutting-edge research.


bunnie working with a factory team. Photo credit: Andrew Huang.

The inverse of the situation is also true. A new hardware product that can be readily produced through fully automated mechanisms is, by definition, less novel than something which relies on processes not already in the canon of fully automated production processes. A laser-printed sheet will always seem more pedestrian than a piece of offset-printed, debossed, and metal-film transferred card stock. The mechanical engineering details of hardware are particularly refractory when it comes to automation; even tasks as simple as specifying colors still rely on the use of printed Pantone registries, not to mention specifying subtleties such as textures, surface finishes, and the hand-feel of buttons and knobs. Of course, any product’s production can be highly automated, but it requires a huge investment and thus must ship in volumes of millions per month to amortize the R&D cost of creating the automated assembly line.

Thus, supply chains are often made less of machines, and more of people. Because humans are an essential part of a supply chain, hardware makers looking to do something new and interesting oftentimes find that the biggest roadblock to their success isn’t money, machines, or material: it’s finding the right partners and people to implement their vision. Despite the advent of the Internet and robots, the supply chain experience is much farther away from Amazon.com or Target than most people would assume; it’s much closer to an open-air bazaar with thousands of vendors and no fixed prices, and in such situations getting the best price or quality for an item means building strong personal relationships with a network of vendors. When I first started out in hardware, I was ill-equipped to operate in the open-market paradigm. I grew up in a sheltered part of Midwest America, and I had always shopped at stores that had labeled prices. I was unfamiliar with bargaining. So, going to the electronics markets in Shenzhen was not only a learning experience for me technically, it also taught me a lot about negotiation and dealing with culturally different vendors. While it’s true that a lot of the goods in the market are rubbish, it’s much better to fail and learn on negotiations over a bag of LEDs for a hobby project, rather than to fail and learn on negotiations on contracts for manufacturing a core product.


One of bunnie’s projects is Novena, an open source laptop. Photo credit: Crowd Supply.

This point is often lost upon hardware startups. Very often I’m asked if it’s really necessary to go to Asia–why not just operate out of the US? Aren’t emails and conference calls good enough, or worst case, “can we hire an agent” who manages everything for us? I guess this is possible, but would you hire an agent to shop for dinner or buy clothes for you? The acquisition of material goods from markets is more than a matter of picking items from the shelf and putting them in a basket, even in developed countries with orderly markets and consumer protection laws. Judgment is required at all stages — when buying milk, perhaps you would sort through the bottles to pick the one with greatest shelf life, whereas an agent would simply grab the first bottle in sight. When buying clothes, you’ll check for fit, loose strings, and also observe other styles, trends, and discounted merchandise available on the shelf to optimize the value of your purchase. An agent operating on specific instructions will at best get you exactly what you want, but you’ll miss out better deals simply because you don’t know about them. At the end of the day, the freshness of milk or the fashion and fit of your clothes are minor details, but when producing at scale even the smallest detail is multiplied thousands, if not millions of times over.

More significant than the loss of operational intelligence, is the loss of a personal relationship with your supply chain when you surrender management to an agent or manage via emails and conference calls alone. To some extent, working with a factory is like being a houseguest. If you clean up after yourself, offer to help with the dishes, and fix things that are broken, you’ll always be welcome and receive better service the next time you stay. If you can get beyond the superficial rituals of politeness and create a deep and mutually beneficial relationship with your factory, the value to your business goes beyond money–intangibles such as punctuality, quality, and service are priceless.

I like to tell hardware startups that if the only value you can bring to a factory is money, you’re basically worthless to them–and even if you’re flush with cash from a round of financing, the factory knows as well as you do that your cash pool is finite. I’ve had folks in startups complain to me that in their previous experience at say, Apple, they would get a certain level of service, so how come we can’t get the same? The difference is that Apple has a hundred billion dollars in cash, and can pay for five-star service; their bank balance and solid sales revenue is all the top-tier contract manufacturers need to see in order to engage.


Circuit Stickers, adhesive-backed electronic components, is another of bunnie’s projects. Photo credit: Andrew “bunnie” Huang.

On the other hand, hardware startups have to hitchhike and couch-surf their way to success. As a result, it’s strongly recommended to find ways other than money to bring value to your partners, even if it’s as simple as a pleasant demeanor and an earnest smile. The same is true in any service industry, such as dining. If you can afford to eat at a three-star Michelin restaurant, you’ll always have fairy godmother service, but you’ll also have a $1,000 tab at the end of the meal. The local greasy spoon may only set you back ten bucks, but in order to get good service it helps to treat the wait staff respectfully, perhaps come at off-peak hours, and leave a good tip. Over time, the wait staff will come to recognize you and give you priority service.

At the end of the day, a supply chain is made out of people, and people aren’t always rational and sometimes make mistakes. However, people can also be inspired and taught, and will work tirelessly to achieve the goals and dreams they earnestly believe in: happiness is more than money, and happiness is something that everyone wants. For management, it’s important to sell your product to the factory, to get them to believe in your vision. For engineers, it’s important to value their effort and respect their skills; I’ve solved more difficult problems through camaraderie over beers than through PowerPoint in conference rooms. For rank-and-file workers, we try our best to design the product to minimize tedious steps, and we spend a substantial amount of effort making the tools we provide them for production and testing to be fun and engaging. Where we can’t do this, we add visual and audio cues that allow the worker to safely zone out while long and boring processes run. The secret to running an efficient hardware supply chain on a budget isn’t just knowing the cost of everything and issuing punctual and precise commands, but also understanding the people behind it and effectively reading their personalities, rewarding them with the incentives they actually desire, and guiding them to improve when they make mistakes. Your supply chain isn’t just a vendor; they are an extension of your own company.

Overall, I’ve found that 99% of the people I encounter in my supply chain are fundamentally good at heart, and have an earnest desire to do the right thing; most problems are not a result of malice, but rather incompetence, miscommunication, or cultural misalignment. Very significantly, people often live up to the expectations you place on them. If you expect them to be bad actors, even if they don’t start out that way, they have no incentive to be good if they are already paying the price of being bad — might as well commit the crime if you know you’ve been automatically judged as guilty with no recourse for innocence. Likewise, if you expect people to be good, oftentimes they will rise up and perform better simply because they don’t want to disappoint you, or more importantly, themselves. There is the 1% who are truly bad actors, and by nature they try to position themselves at the most inconvenient road blocks to your progress, but it’s important to remember that not everyone is out to get you. If you can gather a syndicate of friends large enough, even the bad actors can only do so much to harm you, because bad actors still rely upon the help of others to achieve their ends. When things go wrong your first instinct should not be “they’re screwing me, how do I screw them more,” but should be “how can we work together to improve the situation?”

In the end, building hardware is a fundamentally social exercise. Generally, most interesting and unique processes aren’t automated, and as such, you have to work with other people to develop bespoke processes and products. Furthermore, physical things are inevitably owned or operated upon by other people, and understanding how to motivate and compel them will make a difference in not only your bottom line, but also in your schedule, quality, and service level. Until we can all have Tony Stark’s JARVIS robot to intelligently and automatically handle hardware fabrication, any person contemplating manufacturing hardware at scale needs to understand not only circuits and mechanics, but also how to inspire and effectively command a network of suppliers and laborers.

After all, “it’s people — supply chains are made out of people!”

See you at Maker Faire Bay Area!

Saturday, May 17th, 2014

Looking forward to seeing everyone at Maker Faire Bay Area, happening May 17 & 18 at the San Mateo Event Center. xobs and I will be giving a short half-hour talk starting at 10:30AM in the Expo hall on Saturday about Novena, on the Electronics stage. Afterwards, xobs will be hanging out with his Novena at the Freescale booth, also in the Expo hall, about halfway down on the left hand side across from the Atmel/Arduino booth. If you’re curious to see it or just want to stop by and say hi, we welcome you!

Also, the whole chibitronics crew will be in the Expo hall as well, in the second row between Sony, PCH, and Qualcomm (‽‽‽). We’ll be teaching people how to craft circuits onto paper; attendees who can score a first-come, first-serve spot will receive free circuit stickers and also get a chance to be instructed by the wonderful and dynamic creative genius behind chibitronics, Jie Qi.

haxlr8r Map of Shenzhen Electronics Market

Thursday, November 28th, 2013

I’m fond of trawling the electronic markets of Shenzhen. It’s a huge area, several city blocks; it is overwhelming in scale. My friends at haxlr8r have published a guide to the markets, targeted at helping intrepid hacker-engineers use the market more efficiently, without having to spend a couple of weeks just figuring out the basics.

This is the first guide I’ve seen that gives a floor-by-floor breakdown of the wares contained in each building. This is particularly handy as some buildings contain several specialties that are not reflected by the items you find on the ground floor. It’s also bi-lingual, which helps if you can’t speak the language and you need to point at something the locals can read. While the map is missing a couple of my favorite spots, overall it’s well done and took a lot of effort to compile.

If you’re into making electronics, this electronics market is a must-see destination. If you have an idea you’re itching to build, you might want to consider looking into haxlr8r. haxlr8r’s offices are right in the heart of the electronics district, and I’m a mentor for the program; so, it’s a great opportunity to learn the markets, build stuff, and hang out and have a few beers.

From Spark: Why Kickstarters are Always Delayed

Tuesday, October 1st, 2013

Zach Supalla, Founder and CEO at Spark, wrote a frank introspective on why Kickstarters are always delayed. His thoughts are particularly germane, as he and his team are currently working hard to deliver on the Spark Core’s Kickstart campaign promise. They have taken an ultra-transparent approach to updating supporters on their progress, and their challenges — an approach that takes a lot of courage and thick skin.

You can read his thoughts here.

Dust, Tecate, and Solder: A Hacker’s Holiday (Burning Man 2013)

Sunday, September 15th, 2013

I went to Burning Man for the second time this year. I had an amazing time hanging out with so many interesting and fun people. I spent many a night dancing to the beats of the Robot Heart again, taking in 85,000 watts of pure, uncut bass: it’s where silicon touches the soul. If you haven’t been to Burning Man, this article gives the most balanced perspective I’ve seen to date.

This year I came early for the so-called “Working Man”: the days before Burning Man’s official start, when the art is built and the camps are pitched. As always, looking behind the curtain takes away a bit of the magic, but a lot of things made more sense to me. I chuckle a bit at my naiveté last year, when I thought the artwork appearing on the playa through the week was some sort of organized performance art experience. In reality, it’s just people running behind schedule and working feverishly through the night to get huge monuments erected just in time to be burned into ashes.

This year, as in my previous year, I camped with a group called The Phage, which is part of a three-camp complex known as The Institute (the other two camps are Relaxomatic and False Profit). The camp doesn’t happen without a lot of planning and preparation, but coming from Singapore, it’s hard to be very useful in pre-camp prep. So I did what I could do — make circuit boards.

The Phage camp’s logo is a stylized version of the bacteriophage virus, so I made a custom-styled “locator badge” for our camp this year.

I also made, more or less on a whim, a small driver board for WS2812B-style LED strips.

Below is a short movie of the two in action (sorry IE & Safari users, I only do Ogg Theora).

It’s a unique experience to see your creations being picked up, loved, and then utterly abused for an entire week. It’s even more amazing to get feedback from such friendly, understanding and intelligent users. I spent several splendid afternoons with a soldering iron, teaching people how to solder, as well as fixing and prodding various bits of hardware. As an old-school hacker there are few things more relaxing than sitting around on a lazy afternoon, drinking beers, soldering, and making new friends — and not having to worry about rushing off to my next meeting, completely free of the distractions of the Internet and mobile phones.

Phage Locator Badges

In addition to being a source of light at night, the badges have a “locator” feature. Every badge contains a 433 MHz radio transceiver. On top of this, I built a broadcast paging system so badge-wearers can press a button and cause other people’s badges to strobe in response.

I also attached a high-gain receiver to our art car, Strangelove, so some of the art car’s LED strips would also strobe when the car’s receiver detected a locate request from a badge.

There’s also a huge flame-shooting art piece on our frontage called the “Hive Queen” (on the left in the photo above). Normally, users have to walk up to it and hit buttons to make it shoot fire. Well, after a few beers, someone suggested it would be a good idea to hack another receiver into the Hive Queen (thank you Sean Stevens for loaning me the relay breakout board!). It required a few code changes to ensure that nobody could jam the fire control solenoids on, but it worked.

It’s the first time I’ve ever built a circuit that intentionally caused fire; there’s something viscerally satisfying about remote-controlling six flame throwers at once.

Only 50 of such badges will ever be made, but I figured I’d share the design files so others thinking about doing something similar could benefit. Click the various links for schematics (PDF), gerbers, and PCB source (Altium). You can also find all the firmware for the radio and blinky lights in the Phage git repo.

Compact LED Strip Drivers

The intent behind the LED strip driver was to provide a compact and minimal way to drive cut-to-length LED strips, so that no programming is required at the point of installation. An important feature is the ability to automatically measure the length of an LED strip loop, and adjust the pre-programmed light patterns accordingly. The board was made out of flex circuit material and included a microphone circuit that you could cut off with a pair of scissors, giving an extra dimension of customization with minimal tools.

I was happy to see the number of creative ways people used the LED strip drivers — they were worn as belts, around hats, zip tied to bikes, bags, etc. It was also very instructive to observe how these things failed — at Burning Man, the strips were thoroughly used; they had to survive a week of trudging around the desert, and the repetitive stress of hours of dancing.

I’m also sharing the source for the LED strip driver I made: schematics (PDF), gerbers, and PCB source (Altium). Firmware can be found at this github repo. As a final note, I wouldn’t recommend anyone actually fabricate the designs as-is — please consider them reference material only. There are some flaws in both designs, particularly the flex LED driver. Many things went right, but I would also do many things differently now that I’ve seen how people use them. But, for those who have never done a flex PCB before, the files do give you a taste of some of the quirks that go into making a flexible PCB.

Photo credits: Thanks to Princess SRB, and to Justin Jach for sharing the Phage camp photoset on flickr!